Sketch of Lecture 34 Wed, 11/20/2024

Ut = Ugy
Example 162. Find the unique solution u(z,t) to: u(0,t)=wu(1,t)=0
u(z,0)=1, x€(0,1)
Solution. This is the case k=1, L=1 and f(z)=1, z € (0,1), of Example 160.

In the final step, we extend f(x) to the 2-periodic odd function of Example 139. In particular, earlier, we have
already computed that the Fourier series is

o0

4 .
flz)= Z %sm(nﬂ'm).
n=1
n odd
o~ 4o
Hence, u(z,t) = Z — e ™ "tsin(nnz).
— ™
n odd

Comment. Note that, for ¢t > 0, the exponential very quickly approaches 0 (because of the —n? in the exponent),
so that we get very accurate approximations with only a handful terms.

We can use Sage to plot our solution using the terms n =1, 3,5, ..., 19 of the infinite sum:

>>> var(’x,t?);
>>> uxt = sum(4/(pi*n) * exp(-pi~2*n~2%t) * sin(pi*n*x) for n in range(1,20,2))

>>> density_plot (uxt, (x,0,1), (t,0,0.4), plot_points=200, cmap=’hot?’)

The resulting plot should look similar to the following:
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Can you make sense of the plot? Does that plot confirm our expectations?

[Note that the horizontal axis shows x for x € (0, 1), while the vertical axis shows t for ¢ € (0, 0.4). Yellow
represents 1 (for ¢ =0, all values are 1 because of the initial condition), while black represents 0.]
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The boundary conditions in the next example model insulated ends.

Observe how we can proceed exactly as in Example 160.

U = Kktgy (PDE)
Example 163. Find the unique solution u(z,t) to: wu,(0,t) =wu,(L,t)=0 (BC)
u(z,0)=f(z), z€(0,L) (IC)

Solution.

e We proceed as before and look for solutions u(z,t) = X (z)T'(t) (separation of variables).
Plugging into (PDE), we get X (z)T"(t) =kX"(2)T(t), and so );((;)) 137:((2))
We thus have X"+ XX =0 and T/ + A\kT =0.

= const =: —\.

e From the (BQO), i.e. u,(0,t) = X’(0)T(t) =0, we get X'(0) =
Likewise, uz(L,t) = X'(L)T(t) =0 implies X'(L) =0.

e So X solves X"+ XX =0, X’(0)=0, X'(L)=0. It is shown in Example 156 that, up to multiples, the
only nonzero solutions of this eigenvalue problem are X (z) = cos( "+ 7 ) corresponding to A = (%)2
n=0,1,2,3....

e On the other hand (as before), T solves T’ + AkT =0, and hence T'(t) = e~ Ft = e~ (TR,

e Taken together, we have the solutions u,(z,t) = e_(%)%tcos(% ) solving (PDE)+(BC).

e We wish to combine these in such a way that (IC) holds as well.

At t=0, un(z,0)= cos(% 9:) All of these are 2 L-periodic.

Hence, we extend f(x), which is only given on (0, L), to an even 2L-periodic function (its Fourier cosine
series!). By making it even, its Fourier series only involves cosine terms: f(z) =2 -+ >0 gan cos(— :c)

Note that .
:_/ f(x)cos mm: / f(x)cos )

where the first integral makes reference to the extension of f(x) while the second integral only uses f(x)
on its original interval of definition.

Consequently, (PDE)+(BC)+(IC) is solved by

w(z,t) =2 uo(ﬂc t)+ Z an un(z, t)_ o+ i a”e_(%)zktcos(ﬂ_;x)’
n=1

n=1
where
2 L nwT
an—f/o f(l')COS(T)dl’
Up = Uy y (PDE)
Example 164. Find the unique solution u(z,t) to: u,(0,t) =wu.(4,t)=0 (BC)

u(z,0) =2+ 5cos(mx) — cos(3mx), = € (0,4) (IC)

Solution. This is the case £k =3, L =4 that we solved in Example 163 where we found that the functions
TN\ 2 ™\ 2
Un(z,t) = e (%) ktcos(ﬂ w) —e 3% tcos(ﬂ x)
L 4
solve (PDE)+(BC). Since un(z,0) = cos(% ), we have
2up(x, 0) + bug(x,0) — ui2(x,0) =2+ 5cos(mx) — cos(3mx),
which is what we need for the right-hand side of (IC). Therefore, (PDE)+(BC)+(IC) is solved by

u(z,t) = 2ug(z, t) + Sua(z, t) — ur2(z, t) = 2+ 5e 37 teos(mz) — e =27 teos(3m).
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