: : MATH 332 — Differential Equations II
Mldterm #2 Pra’Ctlce Midterm: Wednesday, Nov 13, 2024

Please print your name:

Bonus challenge. Let me know about any typos you spot in the posted solutions (or lecture sketches). Any typo,
that is not yet fixed by the time you send it to me, is worth a bonus point.

Problem 1. Determine the equilibrium points of the system i—:: (22— 4)y, % =%y — 3xy +5 and classify their
stability.

Solution. To find the equilibrium points, we solve (22 —4)y =0 and 2%y — 3xy + 5=0. The first equation implies
that we have r =42, or y=0.

e If x=2, then the second equation becomes —2y + 5 =0 which implies y :%.

e If x=—2, then the second equation becomes 10y +5 =0 which implies y = —%.
e If y=0, then the second equation becomes 5 =0 which has no solution.
We conclude that we have two equilibrium points: (2, %), (—2, —%)

Our system is %[ z ] :[ ggiz’g ] with [ ;E;Z; ]:[ zzézj;;;?ig, }

The Jacobian matrix is J(x, y) :{ ;L (’;y } :{ %zwysy ;ff _3‘; }
Gz Gy Yy — O1 -

o At (2,%), the Jacobian matrix is J(2,%) :{ 130 _02 } We can read off that the eigenvalues are 10, —2 (because

the matrix is triangular). Since one is positive and the other is negative, (2, g) is a saddle. In particular, (2,%)
is unstable.

o At (—2, —%), the Jacobian matrix is J(—2, —%) :[ % 100 . We can read off that the eigenvalues are 2, 10. Since
2

both are positive, (—2, —%) is a nodal source. In particular, (—2, —%) is unstable.

The following phase portrait confirms our analysis:
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Problem 2. Let y(z) be the unique solution to the IVP 3" =z + 243, y(0) =1, y’(0) =2.

Determine the first several terms (up to x%) in the power series of y(x).

Solution. (successive differentiation) From the DE, y”(0) =0+ 2y(0)>=2.
Differentiating both sides of the DE, we obtain y”’ =1+ 6y2y’. In particular, y”'(0) = 13.
Continuing, y* =12y(y")2 + 6y%y” so that y*(0)=12-1-22+6-12-2=60.

Hence, y(x) = y(0) + y/(0)z +53"(0)2® + 5"(0)2% + o5y D (0)a + ... =1+ 20+ 2? + 2ad+ 2ot 4.

Solution. (plug in power series) Taking into account the initial conditions, y =1+ 2z + ag2? + azz® + asx* + . . ..

Therefore, y” =2as+ 6azx + 12a42% + . ..

On the other hand, y*=1+ 6z + (3az+ 12)z? + ...

Equating coefficients of y” and z + 24°, we find 2a2 =2, 6az=1+2-6 =13, 12a4 = 2(3az + 12).
13

So as =1, az=-—, a4:%a2+2=% and, hence, y(m):1+2x+$2+%x3+%$4+...

Problem 3. Consider the DE 3" =x(22+7) vy’ + (2% + 3)y.

Derive a recursive description of a power series solution y(z) (around z =0).

Solution. Let us spell out the power series for y, 2%y, zy’, 2%y’, y:

oo
y(r) = Z anx”
n=0
o0 oo
2%y(z) = anz"t?= Z Qp—2
n=0 n=2
o0
y'(x)= Z napx™ 1
n=1
oo
zy'(x)= Z na,z"
n=1
o0 oo
23y’ (z) = Z na,z"t?= Z (n —2)a, _x™
n=1 n=3
o0
y”(ac)zz n(n—1)a Z (n+2)(n+1)ap22™
n=2 n=0

Hence, the DE becomes:

i (n+2)(n+1)an42x —Z n—2)a,_ 2z”+7z nanT Jrz Ap—2k JrBZ anpx™.
n=0 n=3

We compare coefficients of x™:
3
e n=0: 2as=3ag, so that as= 50

e n=1. 6az="Ta;+ 3ay, so that agzgal.

S PRI U PO 08
2= %0 T 3 340 = 3740

o n=2: 12a4=14as+ ag+ 3as, so that a4:11—2a0+1—;a 24

e n>23 (n+2)(n+1l)apte=nM—2)an_2+an+an_2+3a,

Armin Straub
straub@southalabama.edu



™m+3 n—1

2= Ginmi D T i m -2
. n -
Equivalently, for n>5, a,, = e 111) Ap—2+ n(”n_fl)an,4.
In conclusion, the power series y(z Z anx™ is recursively determined by
n=0
3 5 53 n—11 n—3
az= 500, as = §a1, aq =ﬂao an = nin—1) Gn—2+ nin—1) an—s forn=5.

(The values ag and a; are the initial conditions.)

Comment. The formula for a,, also holds for n=4. Can you see why?

Problem 4. Find a minimum value for the radius of convergence of a power series solution to (422 +1)y” = 3';’:1?’
at x=3.
Solution. Note that this is a linear DE! (Otherwise, we could not proceed.) Rewriting the DE as y”' — myur

my =0, we see that the singular points are z =+i/2, —1.

Note that z =3 is an ordinary point of the DE and that the distance to the nearest singular point is |3 — (+i/2)| =
V/32+ (1/2)% =5/37 ~3.04 (the distance to —1 is [3— (—1)| =4).

Hence, the DE has power series solutions about x =3 with radius of convergence at least %\/37.

Problem 5. Spell out the power series (around x =0) of the following functions.

1+ 722

Solution.

n

(a) Since e*= Z x—', we have e 3% = Z (=32)" _ Z (=3) o

n! n!
n=0 n=0 n=0
e sy 32 1 ety § DGR S
(b) Since sin(x) —nzo CIES we have sin(3z )—nzo @+ 1] —nzo CZE] x

NE

. 1
(c) Since T

n 5 _ S _ 2\n _ S _ 7\n,.2n
x ,wehave1+7x2—5nz:%( Tx?) —52( )",

n=0

Problem 6.

an(x — x0)"™. How can we compute the a,, from y(x)?

NE

(a) Suppose y(z) has the power series y(z) =

Il
o

n

(b) Suppose f(t) has the Fourier series f(¢ :70 i (ancos( )—l—bn sin (n;rt))

n=1

How can we compute the a,, and b,, from f(¢)?

Armin Straub 3
straub@southalabama.edu



Solution.

(b) The Fourier coefficients a,,, b, can be computed as

:_/ £(1) mrt) : :_/ (1) mrt) .

Problem 7. Consider the function f(¢t)=2(1—t), defined for t € [0, 1].
(a) Sketch the Fourier series of f(t) for t € [—4,4].
(b) Sketch the Fourier cosine series of f(t) for t € [—4,4].
(c) Sketch the Fourier sine series of f(t) for ¢ € [—4,4].

In each sketch, carefully mark the values of the Fourier series at discontinuities.

Solution. The Fourier series (i.e. the 1-periodic extension) as well as the Fourier cosine series (i.e. the 2-periodic even
extension):

N

-4 -3 -2 -1 0 1 2 3 4 4 -3 -2 -1 0 1 2 3 4

The Fourier sine series (i.e. the 2-periodic odd extension):

VAR

2L

In each sketch, the function values at discontinuities are marked in red.

Problem 8. A mass-spring system is described by the equation

(a) For which m does resonance occur?
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(b)

Find the general solution when m=1/9.

Solution.

(a)

(b)

The roots of p(D)=mD?+1 are &i/,/m, so that the natural frequency is 1/,/m. Resonance therefore occurs
if 1/\/m=mn/3 for some n e {1,3,5,...}. Equivalently, resonance occurs if m=9/n? for an odd integer n > 1
(that is, m=9,1,9/25,9/49,...).

In this case, the natural frequency is 3 and we have resonance because 3=n/3 for n=9. For n#9 we solve

This has a solution of the form y,=A4 cos(%t) +B sin(%t) where A, B are undetermined. Plugging into the DE:

%y{,’—k Yp= A<—%%2+ 1>c0s(%t> + B<—%%2+ 1>sin(%t) ;%sin(%t)

It follows that A=0 (we could have seen that coming...) and

. 1 8l sl Sin(n_t)
R Y I e M O M R
9 9

The case n=9 has to be done separately: because of resonance there now exists a solution of the form
yp= At cos(3t) + Bt sin(3t).
Plugging into the DE:
1 2 !

" _ 2, L1
g +yp= 3Bcos(3t) 3Asm(3t) =41 sin(3t)

It follows that B=0 and A= —%. So yp,= —%t cos(3t). By superposition it follows that

1,  ~= 1 _(nt . 1 81 . (nt
Y +y= Z F&n(?) has solution yp——5—4tcos(3t)+ Z msm(?).

n=1 n=1
n odd n odd, n#9

The general solution is y(t) = y,(t) + A cos(3t) + Bsin(3t).

. . o . 1
Problem 9. Derive a recursive description of the power series (around z =0) for y(z) = 97 " 5.2
o0
Solution. Write y(z)= Z anx". Then
n=0
o0 o0 oo (o)
1=(1-2x— 5x2)z anx” = Z anx™ — ZZ anz" ! — 52 apz" T2
n=0 n=0 n=0 n=0
o0 o0 oo
= Z anpz™ — ZZ Ap 12" — 52 Ay 2T
n=0 n=1 n=2
We compare coefficients of z™:
e n=0: l=a
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e n=1. 0=a;— 2ag, so that a; =2a9=2.

e n>2 0=ay,—2an—1—ba,—_2 or, equivalently, a, =2a,_1+ da,_o.

1 (oo}
In conclusion, the power serie§ ———— = apx™ is recursively determined b
pow 1— 2z — ba? ZO " Ve Y
n=

ap=1, a1=2, ap,=2a,_1+5a,_o forn=2.

Problem 10. Compute the Fourier sine series of the function f(t), defined for ¢ € (0, L), with f(t)=3.

Solution. The odd 2L-periodic extension of f(t) takes the values f(t) :{ I_g Ezi igggi’)o)'

1 [t . (nTt 2 [F, . /nmt 6| L nrt\]* 6
b, = f/_Lf(t)Sm(T)dt_f/o 3sm(T)dt—f[—%cos(T)]o—E[l—cos(mr)]
6

12 .. .
_ Sy :{ —, if n is odd,

mn 0, if n is even.

Thus the Fourier sine series is:

S 12 ()
m™m L
n=1

n odd

. . 1 —94 —2 _9,—9 — 24
Problem 11. Suppose that the matrix A satisfies eA%=~| © = F06e™7" = —2e” ™2 =
7| —3e 97 43¢ 2%  Ge 9T 427

(a) Solve y’'= Ay, y(0) :[ f ]

(b) Solve y'sz—l—[ sgw ], y(O)z{ ? }

(c) What is A?

Solution.
@ o) =et |7 e | =20

(b) y(z)= eAz[ f ] + et [Fem A f(t)dt. We compute:

_1.10x 4 2 3z _ T
3 5 +3€ 15

T At _rr 1l g9 4 ge?t  —2e9% 4 202t 0 _ 3 px| —2el0t 4 93t _
fO € f(t)dt_ 0 7{ 3¢9t 4 32t 9t 4 o2t 3et dt _7f0 6e10t 4 o3t dt -7 iem”qtéeh 7%
5

_ 1| —3el%¢ 4 10e% —7
35| 9el0% f 5e37 — 14

Az [T — At _ 1] e 46e72® —2e 94 2e72% | 1| —3el074+10e3* —7 | _ 1| 3e79% —10e72% 4 7e®
Hence, ¢ fo € F(t)dt= 7{ 3697 1 3627  Ge—9% 4 ¢—2¢ 35| Qel0v p5edw_14 | —9e—9% _ 5e—2% 4 14¢% ||

26_2‘6} 1{ 3e=9% — 10e~ 2 4 Te® }_ 1{ 3¢9% 4 602" 4 Te” }
35 :

Finall T)= ==
Y y( ) e—2® —9e 9% — 5¢ 2% 4 14e” 35| —9e79% 4+ 30e 2% + 14e®

: —9zx __: _g\n —2x  .: _9\n n_l (=9)"+6-(—2)" —2-(=9)"+2-(—2)"
(c) Replacing e with (—9)™ as well as e~** with (—2)™, we conclude A" = 7[ 3 (o8 (o2 6-(—o)nh () }

. _[-3 2
In particular, A—[ s g }
Alternatively. Like any fundamental matrix, ® = e4® satisfies %e‘“ = AeA”,

d 1] — —9x __ —2z —9x __ —2x _
Hence, A=| LAz . 96_ 126_2 18e - de -, _ 3.2
dz =0 7| 27e 9% —6e™2* —5de 9T —2e~ 2% £=0 3 -8
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