Pre-lecture: the shocking state of our ignorance

Q: *How fast can we solve* N *linear equations in* N *unknowns?*

Estimated cost of Gaussian elimination:

- A more careful count places the cost at \sim $\frac{1}{3}$ $\frac{1}{3}N^3$ op's.
- For large N , it is only the N^3 that matters.

It says that if $N \rightarrow 10N$ then we have to work 1000 times as hard.

That's not optimal! We can do better than Gaussian elimination:

- Strassen algorithm (1969): $N^{\log_2 7} = N^{2.807}$
- Coppersmith–Winograd algorithm (1990): $N^{2.375}$
- $\bullet \quad ...$ Stothers–Williams–Le Gall (2014): $N^{2.373}$

Is N^2 possible? We have no idea! (better is impossible; why?)

Good news for applications: $\qquad \qquad$ (will see an example soon)

• Matrices typically have lots of structure and zeros which makes solving so much faster.

Organizational

• Help sessions in 441 AH: MW 4-6pm, TR 5-7pm

Review

• A system such as

 $2x - y = 1$ $x + y = 5$

can be written in vector form as

$$
x\begin{bmatrix} 2 \\ 1 \end{bmatrix} + y \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \end{bmatrix}.
$$

• The left-hand side is a **linear combination** of the vectors $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ 1 $\Big\}$ and $\Big\lceil \frac{-1}{1} \Big\rceil$ 1 .

The row and column picture

Example 1. We can think of the linear system

$$
2x - y = 1
$$

$$
x + y = 5
$$

in two different geometric ways. Here, there is a unique solution: $x = 2$, $y = 3$.

Row picture.

- \bullet Each equation defines a line in \mathbb{R}^2 .
- Which points lie on the intersection of these lines?
- \bullet $(2, 3)$ is the (only) intersection of the two lines $2x - y = 1$ and $x +$ $y = 5$.

Column picture.

• The system can be written as

$$
x \begin{bmatrix} 2 \\ 1 \end{bmatrix} + y \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \end{bmatrix}.
$$

- Which linear combinations of $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ 1 1 and $\left[\begin{array}{cc} -1 \\ 1 \end{array}\right]$ 1 \int produce \int_{5}^{1} 5 ?
- \bullet $(2, 3)$ are the coefficients of the (only) such linear combination.

Example 2. Consider the vectors

$$
\boldsymbol{a}_1 = \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}, \quad \boldsymbol{a}_2 = \begin{bmatrix} 4 \\ 2 \\ 14 \end{bmatrix}, \quad \boldsymbol{a}_3 = \begin{bmatrix} 3 \\ 6 \\ 10 \end{bmatrix}, \quad \boldsymbol{b} = \begin{bmatrix} -1 \\ 8 \\ -5 \end{bmatrix}.
$$

Determine if b is a linear combination of a_1, a_2, a_3 .

Solution. Vector b is a linear combination of a_1, a_2, a_3 if we can find weights $x_1, x_2,$ x_3 such that:

This vector equation corresponds to the linear system:

 $x_1 + 4x_2 + 3x_3 = -1$ $+2x_2$ $+6x_3$ = 8 $3x_1$ +14 x_2 +10 x_3 = -5

Corresponding augmented matrix:

$$
\left[\begin{array}{ccc|c}\n1 & 4 & 3 & -1 \\
0 & 2 & 6 & 8 \\
3 & 14 & 10 & -5\n\end{array}\right]
$$

Note that we are looking for a linear combination of the first three columns which

produces the last column.

Such a combination exists \iff the system is consistent.

Row reduction to echelon form:

 \lceil \mathbf{I} 1 4 3 −1 0 2 6 8 3 14 10 −5 1 $\Big| \rightsquigarrow$ $\sqrt{ }$ $\overline{}$ 1 4 3 −1 0 2 6 8 $0 \t2 \t1 \t -2$ 1 $\Big| \rightsquigarrow$ \lceil T 1 4 3 −1 0 2 6 8 $0 \t 0 \t -5 \t -10$ 1 \mathbb{R}

Since this system is consistent, b is a linear combination of a_1, a_2, a_3 .

[It is consistent, because there is no row of the form [0 $|$ 0 $|$ 0 $|$ $\>$ $\>$ \pm $|$ $\>$ \pm $|$ $\>$ \ge $\>$ $\>$ \ge \pm $\>$ \ge \pm $\>$ \pm $\>$ \pm $\>$ \pm $\>$ \pm $\>$ \pm $\>$ \pm $\$

Example 3. In the previous example, express b as a linear combination of a_1, a_2, a_3 .

Solution. The reduced echelon form is:

$$
\begin{bmatrix} 1 & 4 & 3 & -1 \ 0 & 2 & 6 & 8 \ 0 & 0 & -5 & -10 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 4 & 3 & -1 \ 0 & 1 & 3 & 4 \ 0 & 0 & 1 & 2 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 4 & 0 & -7 \ 0 & 1 & 0 & -2 \ 0 & 0 & 1 & 2 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 0 & 0 & 1 \ 0 & 1 & 0 & -2 \ 0 & 0 & 1 & 2 \end{bmatrix}
$$

We read off the solution $x_1 = 1$, $x_2 = -2$, $x_3 = 2$, which yields

Summary

A vector equation

$$
x_1a_1+x_2a_2+\ldots+x_ma_m = b
$$

has the same solution set as the linear system with augmented matrix

$$
\left[\begin{array}{cccc} | & | & \cdots & | & | \\ a_1 & a_2 & \cdots & a_m & b \\ | & | & | & | & | \end{array}\right].
$$

In particular, \bm{b} can be generated by a linear combination of $\bm{a}_1, \bm{a}_2, ..., \bm{a}_m$ if and only if this linear system is consistent.

The span of a set of vectors

Definition 4. The span of vectors $v_1, v_2, ..., v_m$ is the set of all their linear combinations. We denote it by $\text{span}\{\boldsymbol{v}_1,\boldsymbol{v}_2,...,\boldsymbol{v}_m\}$.

In other words, $\text{span}\{\boldsymbol{v}_1,\boldsymbol{v}_2,...,\boldsymbol{v}_m\}$ is the set of all vectors of the form

 $c_1v_1 + c_2v_2 + ... + c_mv_m,$

where $c_1, c_2, ..., c_m$ are scalars.

Example 5.

(a) Describe $\text{span}\left\{\left[\begin{array}{c} 2 \\ 1 \end{array}\right]$ $\left\{\begin{array}{c} 2 \ 1 \end{array}\right\}$ geometrically.

The span consists of all vectors of the form $\alpha \cdot \begin{bmatrix} 2 \ 1 \end{bmatrix}$ 1 .

As points in \mathbb{R}^2 , this is a line.

(b) Describe $\text{span}\left\{\begin{array}{c} 2 \\ 1 \end{array}\right\}$ 1 $\left.\begin{matrix} \end{matrix}\right|$, $\left[\begin{matrix} 4 \\ 1 \end{matrix}\right]$ $\left\{\begin{array}{c}4\1\end{array}\right\}$ geometrically.

Let's show this without relying on our geometric intuition: let $\left[\begin{array}{c} b_1 \ b_2 \end{array} \right]$ $b₂$ any vector.

$$
\left[\begin{array}{cc} 2 & 4 & b_1 \\ 1 & 1 & b_2 \end{array}\right] \rightsquigarrow \left[\begin{array}{cc} 2 & 4 & b_1 \\ 0 & -1 & b_2 - \frac{1}{2}b_1 \end{array}\right] \text{ is consistent}
$$

Hence, $\left[\begin{array}{c} b_1 \\ b_2 \end{array}\right]$ b_2 is a linear combination of $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ 1 $\Big\}$ and $\Big\lceil \frac{4}{1} \Big\rceil$ 1 .

(c) Describe $\text{span}\left\{\begin{array}{c} 2 \\ 1 \end{array}\right\}$ 1 $\left.\begin{matrix} \frac{4}{2} \end{matrix}\right\}$ $\left\{\frac{4}{2}\right\}$ geometrically.

Note that $\begin{bmatrix} 4 \\ 2 \end{bmatrix}$ $\overline{2}$ $\left[-2\cdot\right]\left[\frac{2}{1}\right]$ 1 \vert . Hence, the span is as in (a) .

Again, we can also see this after row reduction: let $\left[\begin{array}{c} b_1 \ b_2 \end{array} \right]$ $b₂$ any vector.

$$
\begin{bmatrix} 2 & 4 & b_1 \\ 1 & 2 & b_2 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 2 & 4 & b_1 \\ 0 & 0 & b_2 - \frac{1}{2}b_1 \end{bmatrix}
$$
 is not consistent for all $\begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$
 $\begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$ is in the span of $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 4 \\ 2 \end{bmatrix}$ only if $b_2 - \frac{1}{2}b_1 = 0$ (i.e. $b_2 = \frac{1}{2}b_1$).
So the span consists of vectors $\begin{bmatrix} b_1 \\ \frac{1}{2}b_1 \end{bmatrix} = b_1 \begin{bmatrix} 1 \\ \frac{1}{2} \end{bmatrix}$.

Armin Straub astraub@illinois.edu

 $\begin{bmatrix} b_1 \end{bmatrix}$ b_2 A single (nonzero) vector always spans a line, two vectors v_1, v_2 usually span a plane but it could also be just a line (if $v_2 = \alpha v_1$).

We will come back to this when we discuss dimension and linear independence.

Example 6. Is
$$
\text{span}\left\{\begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 4 \\ -2 \\ 1 \end{bmatrix}\right\}
$$
 a line or a plane?

Solution. The span is a plane unless, for some α ,

$$
\left[\begin{array}{c} 4 \\ -2 \\ 1 \end{array}\right] = \alpha \cdot \left[\begin{array}{c} 2 \\ -1 \\ 1 \end{array}\right].
$$

Looking at the first entry, $\alpha = 2$, but that does not work for the third entry. Hence, there is no such α . The span is a plane.

Example 7. Consider

$$
A = \left[\begin{array}{cc} 1 & 2 \\ 3 & 1 \\ 0 & 5 \end{array} \right], \qquad \mathbf{b} = \left[\begin{array}{c} 8 \\ 3 \\ 17 \end{array} \right].
$$

Is \bm{b} in the plane spanned by the columns of \bm{A} ?

Solution. b in the plane spanned by the columns of A if and only if

$$
\left[\begin{array}{cc|c}1 & 2 & 8\\3 & 1 & 3\\0 & 5 & 17\end{array}\right]
$$

is consistent.

To find out, we row reduce to an echelon form:

$$
\left[\begin{array}{cc|c}1 & 2 & 8\\3 & 1 & 3\\0 & 5 & 17\end{array}\right] \rightsquigarrow \left[\begin{array}{cc|c}1 & 2 & 8\\0 & -5 & -21\\0 & 5 & 17\end{array}\right] \rightsquigarrow \left[\begin{array}{cc|c}1 & 2 & 8\\0 & -5 & -21\\0 & 0 & -4\end{array}\right]
$$

From the last row, we see that the system is inconsistent. Hence, \boldsymbol{b} is not in the plane spanned by the columns of A.

Armin Straub astraub@illinois.edu

Conclusion and summary

- The span of vectors $a_1, a_2, ..., a_m$ is the set of all their linear combinations.
- Some vector \bm{b} is in $\text{span}\{\bm{a}_1,\bm{a}_2,...,\bm{a}_m\}$ if and only if there is a solution to the linear system with augmented matrix

- \circ $\;\;$ Each solution corresponds to the weights in a linear combination of the ${\bm a}_1,{\bm a}_2,\ldots,$ a_m which gives b .
- This gives a second geometric way to think of linear systems!