Pre-lecture: the shocking state of our ignorance

Q: How fast can we solve N linear equations in N unknowns?

Estimated cost of Gaussian elimination:

Γ		*	*	•••	*	• to create the zeros below the pivot:
						\Longrightarrow on the order of N^2 operations
	÷	÷			÷	• if there is N pivots: \implies on the order of $N \cdot N^2 = N^3$ op's
L	0	*	*	•••	*	\implies on the order of $N \cdot N^2 {=} N^3$ op's

- A more careful count places the cost at $\sim \frac{1}{3}N^3$ op's.
- For large N, it is only the N^3 that matters.

It says that if $N\!\rightarrow\!10N$ then we have to work 1000 times as hard.

That's not optimal! We can do better than Gaussian elimination:

- Strassen algorithm (1969): $N^{\log_2 7} = N^{2.807}$
- Coppersmith–Winograd algorithm (1990): $N^{2.375}$
- ... Stothers–Williams–Le Gall (2014): $N^{2.373}$

Is N^2 possible? We have no idea!

Good news for applications:

(will see an example soon)

(better is impossible; why?)

• Matrices typically have lots of structure and zeros which makes solving so much faster.

Organizational

Help sessions in 441 AH: MW 4-6pm, TR 5-7pm

Review

• A system such as

$$2x - y = 1$$
$$x + y = 5$$

can be written in vector form as

$$x \begin{bmatrix} 2\\1 \end{bmatrix} + y \begin{bmatrix} -1\\1 \end{bmatrix} = \begin{bmatrix} 1\\5 \end{bmatrix}.$$

• The left-hand side is a **linear combination** of the vectors $\begin{bmatrix} 2\\1 \end{bmatrix}$ and $\begin{bmatrix} -1\\1 \end{bmatrix}$.

The row and column picture

Example 1. We can think of the linear system

$$2x - y = 1$$
$$x + y = 5$$

in two different geometric ways. Here, there is a unique solution: x = 2, y = 3.

Row picture.

- Each equation defines a line in \mathbb{R}^2 .
- Which points lie on the intersection of these lines?
- (2, 3) is the (only) intersection of the two lines 2x - y = 1 and x + y = 5.

Column picture.

• The system can be written as

$$x \begin{bmatrix} 2\\1 \end{bmatrix} + y \begin{bmatrix} -1\\1 \end{bmatrix} = \begin{bmatrix} 1\\5 \end{bmatrix}.$$

- Which linear combinations of $\begin{bmatrix} 2\\1 \end{bmatrix}$ and $\begin{bmatrix} -1\\1 \end{bmatrix}$ produce $\begin{bmatrix} 1\\5 \end{bmatrix}$?
- (2, 3) are the coefficients of the (only) such linear combination.

Example 2. Consider the vectors

$$\boldsymbol{a}_1 = \begin{bmatrix} 1\\0\\3 \end{bmatrix}, \quad \boldsymbol{a}_2 = \begin{bmatrix} 4\\2\\14 \end{bmatrix}, \quad \boldsymbol{a}_3 = \begin{bmatrix} 3\\6\\10 \end{bmatrix}, \quad \boldsymbol{b} = \begin{bmatrix} -1\\8\\-5 \end{bmatrix}.$$

Determine if **b** is a linear combination of a_1, a_2, a_3 .

Solution. Vector **b** is a linear combination of a_1, a_2, a_3 if we can find weights x_1, x_2, x_3 such that:

	1] [4		3		$\begin{bmatrix} -1 \end{bmatrix}$
x_1	0	$+x_{2}$	2	$+x_{3}$	6	=	8
	3		14		10		$\begin{bmatrix} -1\\ 8\\ -5 \end{bmatrix}$

This vector equation corresponds to the linear system:

Corresponding augmented matrix:

$$\left[\begin{array}{rrrrr} 1 & 4 & 3 & | -1 \\ 0 & 2 & 6 & 8 \\ 3 & 14 & 10 & | -5 \end{array}\right]$$

Note that we are looking for a linear combination of the first three columns which

produces the last column.

Such a combination exists \iff the system is consistent.

Row reduction to echelon form:

$$\begin{bmatrix} 1 & 4 & 3 & -1 \\ 0 & 2 & 6 & 8 \\ 3 & 14 & 10 & -5 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 4 & 3 & -1 \\ 0 & 2 & 6 & 8 \\ 0 & 2 & 1 & -2 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 4 & 3 & -1 \\ 0 & 2 & 6 & 8 \\ 0 & 0 & -5 & -10 \end{bmatrix}$$

Since this system is consistent, **b** is a linear combination of a_1, a_2, a_3 .

[It is consistent, because there is no row of the form $\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$ with $b \neq 0$.]

Example 3. In the previous example, express **b** as a linear combination of a_1, a_2, a_3 .

Solution. The reduced echelon form is:

$$\begin{bmatrix} 1 & 4 & 3 & -1 \\ 0 & 2 & 6 & 8 \\ 0 & 0 & -5 & -10 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 4 & 3 & -1 \\ 0 & 1 & 3 & 4 \\ 0 & 0 & 1 & 2 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 4 & 0 & -7 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 2 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

We read off the solution $x_1 = 1$, $x_2 = -2$, $x_3 = 2$, which yields

1		4		3		$\begin{bmatrix} -1\\ 8\\ -5 \end{bmatrix}$	
0	-2	2	+2	6	=	8	
3		14		10		-5	

Summary

A vector equation

$$x_1 \boldsymbol{a}_1 + x_2 \boldsymbol{a}_2 + \ldots + x_m \boldsymbol{a}_m = \boldsymbol{b}$$

has the same solution set as the linear system with augmented matrix

$$\left[\begin{array}{cccc} | & | & | & | \\ \boldsymbol{a}_1 & \boldsymbol{a}_2 & \cdots & \boldsymbol{a}_m & \boldsymbol{b} \\ | & | & | & | \end{array}\right].$$

In particular, **b** can be generated by a linear combination of $a_1, a_2, ..., a_m$ if and only if this linear system is consistent.

The span of a set of vectors

Definition 4. The span of vectors $v_1, v_2, ..., v_m$ is the set of all their linear combinations. We denote it by span $\{v_1, v_2, ..., v_m\}$.

In other words, $\operatorname{span}\{\boldsymbol{v}_1, \boldsymbol{v}_2, ..., \boldsymbol{v}_m\}$ is the set of all vectors of the form

 $c_1\boldsymbol{v}_1+c_2\boldsymbol{v}_2+\ldots+c_m\boldsymbol{v}_m,$

where $c_1, c_2, ..., c_m$ are scalars.

Example 5.

(a) Describe span $\left\{ \begin{bmatrix} 2\\1 \end{bmatrix} \right\}$ geometrically.

The span consists of all vectors of the form $\alpha \cdot \begin{vmatrix} 2 \\ 1 \end{vmatrix}$.

As points in \mathbb{R}^2 , this is a line.

(b) Describe span $\left\{ \begin{bmatrix} 2\\1 \end{bmatrix}, \begin{bmatrix} 4\\1 \end{bmatrix} \right\}$ geometrically.

Let's show this without relying on our geometric intuition: let $\begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$ any vector.

$$\left[\begin{array}{cc|c} 2 & 4 & b_1 \\ 1 & 1 & b_2 \end{array}\right] \rightsquigarrow \left[\begin{array}{cc|c} 2 & 4 & b_1 \\ 0 & -1 & b_2 - \frac{1}{2}b_1 \end{array}\right] \text{ is consistent}$$

-2

-1

-0.5-1.0

Hence, $\begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$ is a linear combination of $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 4 \\ 1 \end{bmatrix}$.

(c) Describe span $\left\{ \begin{bmatrix} 2\\1 \end{bmatrix}, \begin{bmatrix} 4\\2 \end{bmatrix} \right\}$ geometrically.

Note that $\begin{bmatrix} 4\\2 \end{bmatrix} = 2 \cdot \begin{bmatrix} 2\\1 \end{bmatrix}$. Hence, the span is as in (a).

Again, we can also see this after row reduction: let $\begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$ any vector.

$$\begin{bmatrix} 2 & 4 & b_1 \\ 1 & 2 & b_2 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 2 & 4 & b_1 \\ 0 & 0 & b_2 - \frac{1}{2}b_1 \end{bmatrix} \text{ is not consistent for all } \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

 $\begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \text{ is in the span of } \begin{bmatrix} 2 \\ 1 \end{bmatrix} \text{ and } \begin{bmatrix} 4 \\ 2 \end{bmatrix} \text{ only if } b_2 - \frac{1}{2}b_1 = 0 \text{ (i.e. } b_2 = \frac{1}{2}b_1\text{).}$ So the span consists of vectors $\begin{bmatrix} b_1 \\ \frac{1}{2}b_1 \end{bmatrix} = b_1 \begin{bmatrix} 1 \\ \frac{1}{2} \end{bmatrix}.$

Armin Straub astraub@illinois.edu 2

3

4

1

A single (nonzero) vector always spans a line, two vectors v_1, v_2 usually span a plane but it could also be just a line (if $v_2 = \alpha v_1$).

We will come back to this when we discuss dimension and linear independence.

Example 6. Is
$$\operatorname{span}\left\{ \begin{bmatrix} 2\\ -1\\ 1 \end{bmatrix}, \begin{bmatrix} 4\\ -2\\ 1 \end{bmatrix} \right\}$$
 a line or a plane?

Solution. The span is a plane unless, for some α ,

$$\left[\begin{array}{c}4\\-2\\1\end{array}\right] = \alpha \cdot \left[\begin{array}{c}2\\-1\\1\end{array}\right].$$

Looking at the first entry, $\alpha = 2$, but that does not work for the third entry. Hence, there is no such α . The span is a plane.

Example 7. Consider

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 1 \\ 0 & 5 \end{bmatrix}, \qquad \boldsymbol{b} = \begin{bmatrix} 8 \\ 3 \\ 17 \end{bmatrix}.$$

Is **b** in the plane spanned by the columns of A?

Solution. *b* in the plane spanned by the columns of *A* if and only if

-

$$\left[\begin{array}{rrrr}1 & 2 & 8 \\ 3 & 1 & 3 \\ 0 & 5 & 17\end{array}\right]$$

is consistent.

To find out, we row reduce to an echelon form:

$$\begin{bmatrix} 1 & 2 & | & 8 \\ 3 & 1 & | & 3 \\ 0 & 5 & | & 17 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 2 & | & 8 \\ 0 & -5 & | & -21 \\ 0 & 5 & | & 17 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 2 & | & 8 \\ 0 & -5 & | & -21 \\ 0 & 0 & | & -4 \end{bmatrix}$$

From the last row, we see that the system is inconsistent. Hence, b is not in the plane spanned by the columns of A.

Armin Straub astraub@illinois.edu

Conclusion and summary

- The span of vectors $a_1, a_2, ..., a_m$ is the set of all their linear combinations.
- Some vector **b** is in $\text{span}\{a_1, a_2, ..., a_m\}$ if and only if there is a solution to the linear system with augmented matrix

- Each solution corresponds to the weights in a linear combination of the $a_1, a_2, ..., a_m$ which gives **b**.
- This gives a second geometric way to think of linear systems!