Pre-lecture: the goal for today

We wish to write linear systems simply as $Ax = b$. For instance:

$$
\begin{array}{ccc}\n2x_1 & +3x_2 & = & b_1 \\
3x_1 & +x_2 & = & b_2\n\end{array}\n\Longleftrightarrow \begin{bmatrix} 2 & 3 \\ 3 & 1 \end{bmatrix}\n\cdot\n\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\n=\n\begin{bmatrix} b_1 \\ b_2 \end{bmatrix}
$$

Why?

- It's concise.
- The compactness also sparks associations and ideas!
	- For instance, can we solve by *dividing* by A ? $x = A^{-1}b$?
	- If $Ax = b$ and $Ay = 0$, then $A(x + y) = b$.
- Leads to matrix calculus and deeper understanding.
	- multiplying, inverting, or factoring matrices

Matrix operations

Basic notation

We will use the following notations for an $m \times n$ matrix A (m rows, n columns).

• In terms of the columns of A :

$$
A = [\begin{array}{cccc} \boldsymbol{a}_1 & \boldsymbol{a}_2 & \cdots & \boldsymbol{a}_n \end{array}] = \left[\begin{array}{cccc} | & | & | \\ \boldsymbol{a}_1 & \boldsymbol{a}_2 & \cdots & \boldsymbol{a}_n \\ | & | & | \end{array} \right]
$$

• In terms of the entries of A :

$$
A = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & & \vdots & \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{bmatrix}, \quad a_{i,j} = \text{entry in} \atop a_{i,j} = \text{with row},
$$

Matrices, just like vectors, are added and scaled componentwise.

Example 1.

$$
\text{(a)} \left[\begin{array}{cc} 1 & 0 \\ 5 & 2 \end{array} \right] + \left[\begin{array}{cc} 2 & 3 \\ 3 & 1 \end{array} \right] = \left[\begin{array}{cc} 3 & 3 \\ 8 & 3 \end{array} \right]
$$

Armin Straub astraub@illinois.edu

$$
(b) 7 \cdot \left[\begin{array}{cc} 2 & 3 \\ 3 & 1 \end{array} \right] = \left[\begin{array}{cc} 14 & 21 \\ 21 & 7 \end{array} \right]
$$

Matrix times vector

Recall that $\left(x_1,x_2,...,x_n\right)$ solves the linear system with augmented matrix

$$
\begin{bmatrix} A & \mathbf{b} \end{bmatrix} = \begin{bmatrix} \begin{vmatrix} \\ \\ \end{vmatrix} & \begin{vmatrix} \\ \\ \end{vmatrix} & \cdots & \begin{vmatrix} \\ \\ \end{vmatrix} \end{bmatrix}
$$

if and only if

$$
x_1a_1+x_2a_2+\ldots+x_na_n=b.
$$

It is therefore natural to define the **product of matrix times vector** as

$$
A\boldsymbol{x} = x_1\boldsymbol{a}_1 + x_2\boldsymbol{a}_2 + \ldots + x_n\boldsymbol{a}_n, \qquad \boldsymbol{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}.
$$

The system of linear equations with augmented matrix $[A \ b]$ can be written in **matrix form** compactly as $Ax = b$.

The product of a matrix A with a vector x is a linear combination of the columns of A with weights given by the entries of x .

Example 2.

(a) $\begin{bmatrix} 1 & 0 \\ 5 & 2 \end{bmatrix}$ · $\lceil 2$ 1 $\Big] = 2 \Big[\begin{array}{c} 1 \\ 5 \end{array} \Big]$ 5 $-1 \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ 2 1 = $\begin{bmatrix} 2 \\ 12 \end{bmatrix}$ (b) $\begin{bmatrix} 2 & 3 \\ 3 & 1 \end{bmatrix}$ · $\begin{bmatrix} 0 \end{bmatrix}$ 1 1 = $\sqrt{3}$ 1 1 $(c) \left[\begin{array}{cc} 2 & 3 \\ 3 & 1 \end{array} \right]$ · $\lceil x_1 \rceil$ $\overline{x_2}$ 1 $=x_1$ $\lceil 2$ 3 1 $+ x_2$ $\sqrt{3}$ 1 1 = $\left[2x_1 + 3x_2\right]$ $3x_1 + x_2$ 1

This illustrates that linear systems can be simply expressed as $Ax = b$:

$$
2x_1 + 3x_2 = b_1
$$

\n
$$
3x_1 + x_2 = b_2
$$

\n
$$
\begin{bmatrix} 2 & 3 \\ 3 & 1 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}
$$

\n(d)
$$
\begin{bmatrix} 2 & 3 \\ 3 & 1 \\ 1 & -1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 4 \\ 0 \end{bmatrix}
$$

Armin Straub astraub@illinois.edu 1

Example 3. Suppose A is $m \times n$ and x is in \mathbb{R}^p . Under which condition does Ax make sense?

We need $n = p$. $\qquad \qquad$ (Go through the definition of Ax to make sure you see why!)

Matrix times matrix

If B has just one column b, i.e. $B = [b]$, then $AB = [Ab]$.

In general, the **product of matrix times matrix** is given by

$$
AB = [Ab1 Ab2 ... Abp], B = [b1 b2 ... bp].
$$

Example 4.

(a)
$$
\begin{bmatrix} 1 & 0 \\ 5 & 2 \end{bmatrix} \cdot \begin{bmatrix} 2 & -3 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 2 & -3 \\ 12 & -11 \end{bmatrix}
$$

\nbecause $\begin{bmatrix} 1 & 0 \\ 5 & 2 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 1 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 5 \end{bmatrix} + 1 \begin{bmatrix} 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 12 \end{bmatrix}$
\nand $\begin{bmatrix} 1 & 0 \\ 5 & 2 \end{bmatrix} \cdot \begin{bmatrix} -3 \\ 2 \end{bmatrix} = -3 \begin{bmatrix} 1 \\ 5 \end{bmatrix} + 2 \begin{bmatrix} 0 \\ 2 \end{bmatrix} = \begin{bmatrix} -3 \\ -11 \end{bmatrix}$.
\n(b) $\begin{bmatrix} 1 & 0 \\ 5 & 2 \end{bmatrix} \cdot \begin{bmatrix} 2 & -3 & 1 \\ 1 & 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & -3 & 1 \\ 12 & -11 & 5 \end{bmatrix}$

Each column of \overline{AB} is a linear combination of the columns of \overline{A} with weights given by the corresponding column of B .

Remark 5. The definition of the matrix product is inevitable from the multiplication of matrix times vector and the fact that we want AB to be defined such that $(AB)x =$ $A(Bx)$.

$$
A(Bx) = A(x_1b_1 + x_2b_2 + \cdots)
$$

= $x_1Ab_1 + x_2Ab_2 + \cdots$
= $(AB)x$ if the columns of AB are Ab_1, Ab_2, \ldots

Example 6. Suppose A is $m \times n$ and B is $p \times q$.

- (a) Under which condition does AB make sense?
- We need $n = p$. (Go through the boxed characterization of AB to make sure you see why!)
- (b) What are the dimensions of AB in that case?

AB is a $m \times q$ matrix.

Armin Straub astraub@illinois.edu

Example 7.

(a)
$$
\begin{bmatrix} 2 & 3 \\ 3 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 3 & 1 \end{bmatrix}
$$

\n(b) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & 3 \\ 3 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 3 & 1 \end{bmatrix}$

This is the 2×2 identity matrix.

Theorem 8. Let A, B, C be matrices of appropriate size. Then:

- $A(BC) = (AB)C$ associative
- $A(B+C) = AB + AC$ left-distributive
- $(A + B)C = AC + BC$ right-distributive

Example 9. However, matrix multiplication is not commutative!

Example 10. Also, a product can be zero even though none of the factors is: $\left[\begin{array}{cc} 2 & 0 \\ 3 & 0 \end{array}\right]$ · $\left[\begin{array}{cc} 0 & 0 \\ 2 & 1 \end{array}\right]$ = $\left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right]$

Transpose of a matrix

Definition 11. The transpose A^T of a matrix A is the matrix whose columns are formed from the corresponding rows of A . rows \leftrightarrow columns

Example 12.

$$
\begin{aligned}\n\text{(a)} \begin{bmatrix} 2 & 0 \\ 3 & 1 \\ -1 & 4 \end{bmatrix}^T &= \begin{bmatrix} 2 & 3 & -1 \\ 0 & 1 & 4 \end{bmatrix} \\
\text{(b)} \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}^T &= \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \\
\text{(c)} \begin{bmatrix} 2 & 3 \\ 3 & 1 \end{bmatrix}^T &= \begin{bmatrix} 2 & 3 \\ 3 & 1 \end{bmatrix}\n\end{aligned}
$$

A matrix A is called **symmetric** if $A = A^T$.

Armin Straub astraub@illinois.edu

Practice problems

- True or false?
	- \circ *AB* has as many columns as *B*.
	- \circ AB has as many rows as B .

The following practice problem illustrates the rule $(AB)^T = B^T A^T$.

Example 13. Consider the matrices

$$
A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ -2 & 4 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix}.
$$

Compute:

(a)
$$
AB = \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ -2 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix} =
$$

\n(b) $(AB)^T = \begin{bmatrix} 1 & 3 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & -2 \\ 2 & 1 & 4 \end{bmatrix} =$
\n(d) $A^T B^T = \begin{bmatrix} 1 & 0 & -2 \\ 2 & 1 & 4 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 2 & 0 \end{bmatrix} =$

What's that fishy smell?