Review

• Elementary matrices performing row operations:

$$
\begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = \begin{bmatrix} a & b & c \\ d - 2a & e - 2b & f - 2c \\ g & h & i \end{bmatrix}
$$

• Gaussian elimination on A gives an LU decomposition $A = LU$:

$$
\left[\begin{array}{ccc} 2 & 1 & 1 \\ 4 & -6 & 0 \\ -2 & 7 & 2 \end{array}\right] = \left[\begin{array}{ccc} 1 & & \\ 2 & 1 & \\ -1 & -1 & 1 \end{array}\right] \left[\begin{array}{ccc} 2 & 1 & 1 \\ & -8 & -2 \\ & & 1 \end{array}\right]
$$

 U is the echelon form, and L records the inverse row operations we did.

- LU decomposition allows us to solve $Ax = b$ for many b.
- $\sqrt{ }$ $\overline{}$ 1 0 0 a 1 0 0 0 1 ŀ \mathbb{R} −1 = $\sqrt{ }$ \mathcal{L} 1 0 0 −a 1 0 0 0 1 1 \mathbb{R} • Already not so clear: $\sqrt{ }$ $\overline{}$ 1 0 0 a 1 0 0 b 1 ŀ \mathbf{I} −1 = $\sqrt{ }$ \perp 1 0 0 −a 1 0 $ab -b 1$ 1 \mathbf{I}

Goal for today: invert these and any other matrices (if possible)

The inverse of a matrix

Example 1. The inverse of a real number a is denoted as a^{-1} . For instance, $7^{-1} = \frac{1}{7}$ $\frac{1}{7}$ and

$$
7 \cdot 7^{-1} = 7^{-1} \cdot 7 = 1.
$$

In the context of $n \times n$ matrix multiplication, the role of 1 is taken by the $n \times n$ identity matrix

Definition 2. An $n \times n$ matrix A is **invertible** if there is a matrix B such that

$$
AB = BA = I_n.
$$

In that case, B is the **inverse** of A and we write $A^{-1} = B$.

Example 3. We already saw that elementary matrices are invertible.

• $\sqrt{ }$ $\overline{}$ 1 0 0 2 1 0 0 0 1 ŀ \mathbb{R} −1 = $\sqrt{ }$ \mathbb{R} 1 −2 1 1 1 \mathbb{R}

Note.

• The inverse of a matrix is unique. Why? Assume B and C are both inverses of A . Then:

$$
C = CI_n = CAB = I_nB = B
$$

• Do not write $\frac{A}{B}$. Why?

Because it is unclear whether it should mean AB^{-1} or $B^{-1}A$.

• If $AB = I$, then $BA = I$ (and so $A^{-1} = B$). Not easy to show at this stage.

Example 4. The matrix $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ is not invertible. Why?

Solution.

$$
\left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right] \left[\begin{array}{cc} a & b \\ c & d \end{array}\right] = \left[\begin{array}{cc} c & d \\ 0 & 0 \end{array}\right] \neq \left[\begin{array}{cc} 1 \\ 1 \end{array}\right]
$$

Example 5. If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, then

$$
A^{-1} = \frac{1}{ad - bc} \left[\begin{array}{cc} d & -b \\ -c & a \end{array} \right]
$$
 provided that $ad - bc \neq 0$.

Let's check that:

$$
\frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \frac{1}{ad-bc} \begin{bmatrix} ad-bc & 0 \\ 0 & -cb+ad \end{bmatrix} = I_2
$$

Note.

- A 1×1 matrix $[a]$ is invertible $\Longleftrightarrow a \neq 0$.
- A 2×2 matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is invertible $\Longleftrightarrow ad-bc \neq 0$.

We will encounter the quantities on the right again when we discuss determinants.

So A^{-1} is well-defined.

Solving systems using matrix inverse

Theorem 6. Let A be invertible. Then the system $Ax = b$ has the unique solution $x = A^{-1}b$.

Proof. Multiply both sides of $Ax = b$ with A^{-1} (from the left!). □

Example 7. Solve $\frac{-7x_1}{5x_1} + \frac{3x_2}{-2x_2} = \frac{2}{1}$ using matrix inversion.

Solution. In matrix form $Ax = b$, this system is

$$
\left[\begin{array}{rr} -7 & 3 \\ 5 & -2 \end{array}\right] x = \left[\begin{array}{rr} 2 \\ 1 \end{array}\right].
$$

Computing the inverse:

$$
\begin{bmatrix} -7 & 3 \ 5 & -2 \end{bmatrix}^{-1} = \frac{1}{-1} \begin{bmatrix} -2 & -3 \ -5 & -7 \end{bmatrix} = \begin{bmatrix} 2 & 3 \ 5 & 7 \end{bmatrix}
$$

Recall that $\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$.

Hence, the solution is:

$$
\boldsymbol{x} = A^{-1}\boldsymbol{b} = \left[\begin{array}{cc} 2 & 3 \\ 5 & 7 \end{array}\right] \left[\begin{array}{c} 2 \\ 1 \end{array}\right] = \left[\begin{array}{c} 7 \\ 17 \end{array}\right]
$$

Recipe for computing the inverse

To solve $Ax = b$, we do row reduction on $[A | b]$.

To solve $AX = I$, we do row reduction on $[A | I]$.

To compute A^{-1} :

: Gauss–Jordan method

- Form the augmented matrix $[A | I]$.
- Compute the reduced echelon form. The same state of the Causs-Jordan elimination)
- If A is invertible, the result is of the form $\left[I \middle| A^{-1} \right]$.

Example 8. Find the inverse of $A =$ $\sqrt{ }$ \mathcal{L} 2 0 0 −3 0 1 0 1 0 1 $\Big\vert$, if it exists.

Solution. By row reduction:

$$
\begin{bmatrix} A & I \end{bmatrix} \rightsquigarrow \begin{bmatrix} I & A^{-1} \end{bmatrix}
$$

$$
\begin{bmatrix} 2 & 0 & 0 & 1 & 0 & 0 \\ -3 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 0 & 0 & \frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & \frac{3}{2} & 1 & 0 \end{bmatrix}
$$

Hence,
$$
A^{-1} = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 1 \\ \frac{3}{2} & 1 & 0 \end{bmatrix}
$$
.

Example 9. Let's do the previous example step by step.

$$
\begin{bmatrix}\nA & I\n\end{bmatrix}\n\longrightarrow\n\begin{bmatrix}\nI & A^{-1}\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\n2 & 0 & 0 & 1 & 0 & 0 \\
-3 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1\n\end{bmatrix}\n\begin{bmatrix}\nR_{2} \rightarrow R_{2} + \frac{3}{2}R_{1} \\
\rightarrow \frac{3}{2}R_{2} \\
\rightarrow R_{2} \rightarrow R_{3} \\
\downarrow R_{2} \rightarrow R_{3}\n\end{bmatrix}\n\begin{bmatrix}\n2 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & \frac{3}{2} & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & \frac{3}{2} & 1 & 0\n\end{bmatrix}
$$

Note. Here is another way to see why this algorithm works:

• Each row reduction corresponds to multiplying with an elementary matrix E :

 $[A | I] \rightsquigarrow [E_1A | E_1I] \rightsquigarrow [E_2E_1A | E_2E_1] \rightsquigarrow ...$

• So at each step:

 $[A | I] \rightsquigarrow [FA | F]$ with $F = E_r \cdots E_2 E_1$

• If we manage to reduce $\left[A | I | I |$ to $\left[I | F \right]$, this means

 $FA = I$ and hence $A^{-1} = F$.

Some properties of matrix inverses

Theorem 10. Suppose A and B are invertible. Then:

- A^{-1} is invertible and $(A^{-1})^{-1} = A$. Why? Because $AA^{-1} = I$
- A^T is invertible and $(A^T)^{-1} = (A^{-1})^T$. Why? Because $(A^{-1})^T A^T = (A A^{-1})^T = I$

 $T = I$ (Recall that $(AB)^T = B^T A^T$.)

• AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$. Why? Because $(B^{-1}A^{-1})(AB) = B^{-1}IB = B^{-1}B = I$