
Review

• The inverse A−1 of a matrix A is, if it exists, characterized by

AA−1=A−1A= In.

•

[

a b

c d

]

−1

=
1

ad− bc

[

d −b

−c a

]

• If A is invertible, then the system Ax= b has the unique solution x=A−1
b.

• Gauss–Jordan method to compute A−1:

◦ bring to RREF [ A I ] 
[

I A−1
]

• (A−1)−1=A

• (AT)−1=(A−1)T

• (AB)−1=B−1A−1

Why? Because (B−1A−1)(AB)=B−1IB=B−1B= I

Further properties of matrix inverses

Theorem 1. Let A be an n × n matrix. Then the following statements are equiva-
lent: (i.e., for a given A, they are either all true or all false)

(a) A is invertible.

(b) A is row equivalent to In.

(c) A has n pivots. (Easy to check!)

(d) For every b, the system Ax= b has a unique solution.

Namely, x=A−1
b.

(e) There is a matrix B such that AB= In. (A has a “right inverse”.)

(f) There is a matrix C such that CA= In. (A has a “left inverse”.)

Note. Matrices that are not invertible are often called singular.

The book uses singular for n × n matrices that do not have n pivots. As we just saw, it doesn’t
make a difference.

Example 2. We now see at once that A=
[

0 1
0 0

]

is not invertible.

Why? Because it has only one pivot.

Armin Straub
astraub@illinois.edu

1



Application: finite differences

Let us apply linear algebra to the boundary value problem (BVP)

−
d2u

dx2
= f(x), 06x6 1, u(0)=u(1)= 0.

f(x) is given, and the goal is to find u(x).

Physical interpretation: models steady-state temperature distribution in a bar (u(x) is temperature
at point x) under influence of an external heat source f(x) and with ends fixed at 0◦ (ice cube at
the ends?).

Remark 3. Note that this simple BVP can be solved by integrating f(x) twice. We get
two constants of integration, and so we see that the boundary condition u(0)=u(1)=0
makes the solution u(x) unique.

Of course, in the real applications the BVP would be harder. Also, f(x) might only be known at
some points, so we cannot use calculus to integrate it.

u(x)

x 1

We will approximate this problem as follows:

• replace u(x) by its values at equally spaced points in [0, 1]

u 0
=
0

u 1
=
u
(h
)

u 2
=
u
(2
h
)

u 3
=
u
(3
h
)

un
=
u
(n
h
)

un
+
1
=
0

. . .0 h 2h 3h nh 1

• approximate
d2u

dx2
at these points (finite differences)

• replace differential equation with linear equation at each point

• solve linear problem using Gaussian elimination
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Finite differences

Finite differences for first derivative:

du

dx
≈

∆u

∆x
=

u(x+ h)− u(x)

h

@

or u(x)−u(x− h)

h

@

or u(x+ h)− u(x−h)

2h
symmetric and most accurate

Note. Recall that you can always use L’Hospital’s rule to determine the limit of such
quantities (especially more complicated ones) as h→ 0.

Finite difference for second derivative:

d2u

dx2
≈

u(x+ h)− 2u(x)+u(x−h)

h2

the only symmetric choice involving only u(x), u(x±h)

Question 4. Why does this approximate
d2u

dx2
as h→ 0?

Solution.
d2u

dx2 ≈

du

dx
(x+h)−

du

dx
(x)

h

≈

u(x+h)−u(x)

h
−

u(x)−u(x−h)

h

h

≈
u(x+h)− 2u(x) +u(x−h)

h2
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Setting up the linear equations

−
d2u

dx2
= f(x), 06x6 1, u(0)=u(1)= 0.

u 0
=
0

u 1
=
u
(h
)

u 2
=
u
(2
h
)

u 3
=
u
(3
h
)

un
=
u
(n
h
)

un
+
1
=
0

. . .0 h 2h 3h nh 1

Using −
d2

u

dx2
≈−

u(x+h)− 2u(x)+u(x−h)

h2
, we get:

at x=h: −
u(2h)− 2u(h)+u(0)

h2
= f(h)

� 2u1− u2=h2f(h) (1)

at x=2h: −
u(3h)− 2u(2h)+u(h)

h2
= f(2h)

� −u1+2u2−u3=h2f(2h) (2)

at x=3h:

� −u2+2u3−u4=h2f(3h) (3)



at x=nh: −
u((n+1)h)− 2u(nh) +u((n− 1)h)

h2
= f(nh)

� −un−1+2un= h2f(nh) (n)

Example 5. In the case of six divisions (n=5, h=
1

6
), we get:













2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2
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x
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h2f(h)

h2f(2h)

h2f(3h)

h2f(4h)

h2f(5h)
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b
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Such a matrix is called a band matrix. As we will see next, such matrices always have
a particularly simple LU decomposition.

Gaussian elimination:
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R2→R2+
1
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R3→R3+
2

3
R2
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R4→R4+
3
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4

5
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In conclusion, we have the LU decomposition:
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That’s how the LU decomposition of band matrices always looks like.
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