Review

- A **vector space** is a set of vectors which can be added and scaled (without leaving the space!); subject to the "usual" rules.
- The set of all polynomials of degree up to 2 is a vector space.

$$\begin{split} & [a_0 + a_1 t + a_2 t^2] + [b_0 + b_1 t + b_2 t^2] = [(a_0 + b_0) + (a_1 + b_1) t + (a_2 + b_2) t^2] \\ & r[a_0 + a_1 t + a_2 t^2] = [(ra_0) + (ra_1) t + (ra_2) t^2] \end{split}$$

Note how it "works" just like \mathbb{R}^3 .

• The set of all polynomials of degree exactly 2 is not a vector space.

$$\underbrace{[1+4t+t^2]}_{\text{degree }2} + \underbrace{[3-t-t^2]}_{\text{degree }2} = \underbrace{[4+3t]}_{\text{NOT degree }2}$$

• An easy test that often works is to check whether the set contains the zero vector. (Works in the previous case.)

Example 1. Let V be the set of all functions $f: \mathbb{R} \to \mathbb{R}$. Is V a vector space?

Solution. Yes! Addition of functions f and g:

$$(f+g)(x) = f(x) + g(x)$$

Note that, once more, this definition is "component-wise". Likewise for scalar multiplication.

Subspaces

Definition 2. A subset W of a vector space V is a **subspace** if W is itself a vector space.

Since the rules like associativity, commutativity and distributivity still hold, we only need to check the following:

$\in W$)
$\in W$)

Note that "0 in W" (first condition) follows from "W closed under scaling" (third condition). But it is crucial and easy to check, so deserves its own bullet point.

Example 3. Is $W = \operatorname{span}\left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$ a subspace of \mathbb{R}^2 ?

Solution. Yes!

- W contains $\begin{bmatrix} 0\\0 \end{bmatrix} = 0 \begin{bmatrix} 1\\1 \end{bmatrix}$.
- $\begin{bmatrix} a \\ a \end{bmatrix} + \begin{bmatrix} b \\ b \end{bmatrix} = \begin{bmatrix} a+b \\ a+b \end{bmatrix}$ is in W.
- $c\begin{bmatrix} a\\a\end{bmatrix} = \begin{bmatrix} ca\\ca\end{bmatrix}$ is in W.

Example 4. Is
$$W = \left\{ \begin{bmatrix} a \\ 0 \\ b \end{bmatrix} : a, b \text{ in } \mathbb{R} \right\}$$
 a subspace of \mathbb{R}^3 ?

Solution. Yes!

- W contains $\begin{bmatrix} 0\\0\\0 \end{bmatrix}$.
- $\begin{bmatrix} a_1\\0\\b_1 \end{bmatrix} + \begin{bmatrix} a_2\\0\\b_2 \end{bmatrix} = \begin{bmatrix} a_1+a_2\\0\\b_1+b_2 \end{bmatrix}$ is in W. • $c \begin{bmatrix} a\\0\\b \end{bmatrix} = \begin{bmatrix} ca\\0\\cb \end{bmatrix}$ is in W.

The subspace W is isomorphic to \mathbb{R}^2 (translation: $\begin{bmatrix} a \\ 0 \\ b \end{bmatrix} \leftrightarrow \begin{bmatrix} a \\ b \end{bmatrix}$) but they are not the same!

Example 5. Is
$$W = \left\{ \begin{bmatrix} a \\ 1 \\ b \end{bmatrix} : a, b \text{ in } \mathbb{R} \right\}$$
 a subspace of \mathbb{R}^3 ?

Solution. No! Missing 0.

Armin Straub astraub@illinois.edu

Note:
$$W = \begin{bmatrix} 0\\1\\0 \end{bmatrix} + \left\{ \begin{bmatrix} a\\0\\b \end{bmatrix} : a, b \text{ in } \mathbb{R} \right\}$$
 is "close" to a vector space

Geometrically, it is a plane, but it does not contain the origin.

Example 6. Is $W = \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$ a subspace of \mathbb{R}^2 ?

Solution. Yes!

- W contains $\begin{bmatrix} 0\\0 \end{bmatrix}$.
- $\begin{bmatrix} 0\\0 \end{bmatrix} + \begin{bmatrix} 0\\0 \end{bmatrix} = \begin{bmatrix} 0\\0 \end{bmatrix}$ is in W.
- $c\begin{bmatrix} 0\\0\end{bmatrix} = \begin{bmatrix} 0\\0\end{bmatrix}$ is in W.

Example 7. Is $W = \left\{ \begin{bmatrix} x \\ x+1 \end{bmatrix} : x \text{ in } \mathbb{R} \right\}$ a subspace of \mathbb{R}^2 ?

Solution. No! W does not contain $\begin{bmatrix} 0\\0 \end{bmatrix}$.

[If $\mathbf{0}$ is missing, some other things always go wrong as well.

For instance, $2\begin{bmatrix} 1\\2\end{bmatrix} = \begin{bmatrix} 2\\4\end{bmatrix}$ or $\begin{bmatrix} 1\\2\end{bmatrix} + \begin{bmatrix} 2\\3\end{bmatrix} = \begin{bmatrix} 3\\5\end{bmatrix}$ are not in W.]

Example 8. Is $W = \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\} \cup \left\{ \begin{bmatrix} x \\ x+1 \end{bmatrix} : x \text{ in } \mathbb{R} \right\}$ a subspace of \mathbb{R}^2 ?

[In other words, W is the set from the previous example plus the zero vector.]

Solution. No! $2\begin{bmatrix} 1\\2\end{bmatrix} = \begin{bmatrix} 2\\4\end{bmatrix}$ not in W.

Spans of vectors are subspaces

Review. The **span** of vectors $v_1, v_2, ..., v_m$ is the set of all their linear combinations. We denote it by span{ $v_1, v_2, ..., v_m$ }.

In other words, $\operatorname{span}\{\boldsymbol{v}_1, \boldsymbol{v}_2, ..., \boldsymbol{v}_m\}$ is the set of all vectors of the form

 $c_1\boldsymbol{v}_1+c_2\boldsymbol{v}_2+\ldots+c_m\boldsymbol{v}_m,$

where $c_1, c_2, ..., c_m$ are scalars.

Theorem 9. If $v_1, ..., v_m$ are in a vector space V, then span $\{v_1, ..., v_m\}$ is a subspace of V.

Why?

- **0** is in span $\{\boldsymbol{v}_1, ..., \boldsymbol{v}_m\}$
- $[c_1 v_1 + ... + c_m v_m] + [d_1 v_1 + ... + d_m v_m]$ = $[(c_1 + d_1) v_1 + ... + (c_m + d_m) v_m]$
- $r[c_1 v_1 + ... + c_m v_m] = [(rc_1)v_1 + ... + (rc_m)v_m]$

Example 10. Is $W = \left\{ \begin{bmatrix} a+3b\\2a-b \end{bmatrix} : a, b \text{ in } \mathbb{R} \right\}$ a subspace of \mathbb{R}^2 ?

Solution. Write vectors in W in the form

$$\begin{bmatrix} a+3b\\2a-b \end{bmatrix} = \begin{bmatrix} a\\2a \end{bmatrix} + \begin{bmatrix} 3b\\-b \end{bmatrix} = a \begin{bmatrix} 1\\2 \end{bmatrix} + b \begin{bmatrix} 3\\-1 \end{bmatrix}$$

to see that

$$W = \operatorname{span}\left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 3\\-1 \end{bmatrix} \right\}.$$

By the theorem, W is a vector space. Actually, $W = \mathbb{R}^2$.

Example 11. Is $W = \left\{ \begin{bmatrix} -a & 2b \\ a+b & 3a \end{bmatrix} : a, b \text{ in } \mathbb{R} \right\}$ a subspace of $M_{2 \times 2}$, the space of 2×2 matrices?

Solution. Write "vectors" in W in the form

$$\begin{bmatrix} -a & 2b \\ a+b & 3a \end{bmatrix} = a \begin{bmatrix} -1 & 0 \\ 1 & 3 \end{bmatrix} + b \begin{bmatrix} 0 & 2 \\ 1 & 0 \end{bmatrix}$$

to see that

$$W = \operatorname{span}\left\{ \left[\begin{array}{cc} -1 & 0 \\ 1 & 3 \end{array} \right], \left[\begin{array}{cc} 0 & 2 \\ 1 & 0 \end{array} \right] \right\}.$$

By the theorem, W is a vector space.

Practice problems

Example 12. Are the following sets vector spaces?

(a) $W_1 = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a + 3b = 0, 2a - c = 1 \right\}$

No, W_1 does not contain **0**.

(b) $W_2 = \left\{ \begin{bmatrix} a+c & -2b \\ b+3c & c \end{bmatrix} : a, b, c \text{ in } \mathbb{R} \right\}$ Yes, $W_2 = \operatorname{span}\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -2 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix} \right\}.$

Hence, W_2 is a subspace of the vector space Mat_{2×2} of all 2×2 matrices.

- (c) $W_3 = \left\{ \begin{bmatrix} a \\ b \end{bmatrix} : ab \ge 0 \right\}$ No. For instance, $\begin{bmatrix} 3 \\ 1 \end{bmatrix} + \begin{bmatrix} -2 \\ -4 \end{bmatrix} = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$ is not in W_3 .
- (d) W_4 is the set of all polynomials p(t) such that p'(2) = 1. No. W_4 does not contain the zero polynomial.
- (e) W_5 is the set of all polynomials p(t) such that p'(2) = 0. Yes. If p'(2) = 0 and q'(2) = 0, then (p+q)'(2) = 0. Likewise for scaling. Hence, W_5 is a subspace of the vector space of all polynomials.