Organizational

• Interested in joining class committee?

meet ∼3 times to discuss ideas you may have for improving class

Next: bases, dimension and such

http://abstrusegoose.com/235

Solving $Ax = 0$ and $Ax = b$

Column spaces

Definition 1. The **column space** $Col(A)$ of a matrix A is the span of the columns of A. If $A = [\boldsymbol{a}_1 \dots \boldsymbol{a}_n]$, then $Col(A) = span{\{\boldsymbol{a}_1, ..., \boldsymbol{a}_n\}}$.

• In other words, b is in $Col(A)$ if and only if $Ax = b$ has a solution.

Why? Because $A{\boldsymbol x}{=}\overline{x_1{\boldsymbol a}_1+...+x_n{\boldsymbol a}_n}$ is the linear combination of columns of A with coefficients given by x .

• If A is $m \times n$, then $Col(A)$ is a subspace of \mathbb{R}^m .

Why? Because any span is a space.

Example 2. Find a matrix A such that $W = \text{Col}(A)$ where

$$
W = \left\{ \begin{bmatrix} 2x - y \\ 3y \\ 7x + y \end{bmatrix} : x, y \text{ in } \mathbb{R} \right\}.
$$

Solution. Note that

$$
\left[\begin{array}{c} 2x - y \\ 3y \\ 7x + y \end{array}\right] = x \left[\begin{array}{c} 2 \\ 0 \\ 7 \end{array}\right] + y \left[\begin{array}{c} -1 \\ 3 \\ 1 \end{array}\right].
$$

Hence,

$$
W = \text{span}\left\{ \begin{bmatrix} 2 \\ 0 \\ 7 \end{bmatrix}, \begin{bmatrix} -1 \\ 3 \\ 1 \end{bmatrix} \right\} = \text{Col}\left(\begin{bmatrix} 2 & -1 \\ 0 & 3 \\ 7 & 1 \end{bmatrix} \right).
$$

Definition 3. The null space of a matrix A is

 $Nul(A) = \{x : Ax = 0\}.$

In other words, if A is $m \times n$, then its null space consists of those vectors $\boldsymbol{x} \in \mathbb{R}^n$ which solve the homogeneous equation $Ax = 0$.

Theorem 4. If A is $m \times n$, then $\text{Nul}(A)$ is a subspace of \mathbb{R}^n .

Proof. We check that $\text{Nul}(A)$ satisfies the conditions of a subspace:

- Nul(A) contains 0 because $A0 = 0$.
- If $Ax = 0$ and $Ay = 0$, then $A(x + y) = Ax + Ay = 0$.

Hence, $\text{Nul}(A)$ is closed under addition.

• If $Ax = 0$, then $A(cx) = cAx = 0$.

Hence, $\text{Nul}(A)$ is closed under scalar multiplication.

 \Box

Solving $Ax = 0$ yields an *explicit description* of $\text{Nul}(A)$.

By that we mean a description as the span of some vectors.

Example 5. Find an explicit description of $\text{Nul}(A)$ where

$$
A = \left[\begin{array}{rrrr} 3 & 6 & 6 & 3 & 9 \\ 6 & 12 & 13 & 0 & 3 \end{array} \right].
$$

Solution.

$$
\begin{bmatrix} 3 & 6 & 6 & 3 & 9 \ 6 & 12 & 13 & 0 & 3 \end{bmatrix} \xrightarrow{R2 \to R2-2R1} \begin{bmatrix} 3 & 6 & 6 & 3 & 9 \ 0 & 0 & 1 & -6 & -15 \ 0 & 0 & 1 & -6 & -15 \end{bmatrix}
$$

$$
\xrightarrow{R1 \to \frac{1}{3}R1} \begin{bmatrix} 1 & 2 & 2 & 1 & 3 \ 0 & 0 & 1 & -6 & -15 \ 0 & 0 & 1 & -6 & -15 \end{bmatrix}
$$

$$
\xrightarrow{R1 \to R1-2R2} \begin{bmatrix} 1 & 2 & 0 & 13 & 33 \ 0 & 0 & 1 & -6 & -15 \end{bmatrix}
$$

From the RREF we read off a parametric description of the solutions x to $Ax=0$. Note that x_2 , x_4 , x_5 are free.

$$
\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} -2x_2 - 13x_4 - 33x_5 \\ x_2 \\ 6x_4 + 15x_5 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix}
$$

$$
= x_2 \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -13 \\ 0 \\ 6 \\ 1 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} -33 \\ 0 \\ 15 \\ 0 \\ 1 \end{bmatrix}
$$

In other words,

$$
\text{Nul}(A) = \text{span}\left\{ \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -13 \\ 0 \\ 6 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -33 \\ 0 \\ 15 \\ 0 \\ 1 \end{bmatrix} \right\}.
$$

Note. The number of vectors in the spanning set for $\mathrm{Nul}(A)$ as derived above (which is as small as possible) equals the number of free variables in $Ax = 0$.

Another look at solutions to $Ax = b$

Theorem 6. Let x_p be a solution of the equation $Ax = b$.

Then every solution to $Ax = b$ is of the form $x = x_p + x_n$, where x_n is a solution to the **homogeneous** equation $Ax = 0$.

- In other words, $\{x: Ax = b\} = x_p + \text{Nul}(A)$.
- We often call x_p a particular solution.

The theorem then says that every solution to $Ax = b$ is the sum of a fixed chosen particular solution and some solution to $Ax = 0$.

Proof. Let x be another solution to $Ax = b$. We need to show that $x_n = x - x_p$ is in Nul(A).

$$
A(\boldsymbol{x} - \boldsymbol{x}_p) = A\boldsymbol{x} - A\boldsymbol{x}_p = \boldsymbol{b} - \boldsymbol{b} = \boldsymbol{0}
$$

Using the RREF, find a parametric description of the solutions to $Ax = b$:

$$
\begin{bmatrix} 1 & 3 & 3 & 2 & 1 \ 2 & 6 & 9 & 7 & 5 \ -1 & -3 & 3 & 4 & 5 \end{bmatrix} \xrightarrow{R3 \to R3+R1} \begin{bmatrix} 1 & 3 & 3 & 2 & 1 \ 0 & 0 & 3 & 3 & 3 \ 0 & 0 & 6 & 6 & 6 \ 0 & 0 & 3 & 3 & 3 \ 0 & 0 & 6 & 6 & 6 \end{bmatrix}
$$

\n
$$
\xrightarrow{R3 \to R3-2R2} \begin{bmatrix} 1 & 3 & 3 & 2 & 1 \ 0 & 0 & 3 & 3 & 3 \ 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 3 & 3 & 3 \ 0 & 0 & 0 & 0 & 0 \end{bmatrix}
$$

\n
$$
\xrightarrow{R2 \to \frac{1}{3}R2} \begin{bmatrix} 1 & 3 & 3 & 2 & 1 \ 0 & 0 & 1 & 1 & 1 \ 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 \end{bmatrix}
$$

\n
$$
\xrightarrow{R1 \to R1-3R2} \begin{bmatrix} 1 & 3 & 0 & -1 & -2 \ 0 & 0 & 1 & 1 & 1 \ 0 & 0 & 0 & 0 & 0 \end{bmatrix}
$$

Every solution to $Ax = b$ is therefore of the form:

$$
\boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -2 - 3x_2 + x_4 \\ x_2 \\ 1 - x_4 \\ x_4 \end{bmatrix}
$$

Armin Straub astraub@illinois.edu

We can see nicely how every solution is the sum of a particular solution x_p and solutions to $Ax = 0$.

Note. A convenient way to just find a particular solution is to set all free variables to zero (here, $x_2 = 0$ and $x_4 = 0$).

Of course, any other choice for the free variables will result in a particular solution. −4

For instance, $x_2 = 1$ and $x_4 = 1$ we would get $\boldsymbol{x}_p =$ Г \mathcal{L} 1 $\overline{0}$ 1 1 $\| \cdot$

Practice problems

- True or false?
	- \circ The solutions to the equation $Ax = b$ form a vector space. No, with the only exception of $\mathbf{b} = \mathbf{0}$.
	- \circ The solutions to the equation $Ax = 0$ form a vector space. Yes. This is the null space $\text{Nul}(A)$.

Example 8. Is the given set W a vector space?

If possible, express W as the column or null space of some matrix A .

(a)
$$
W = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} : 5x = y + 2z \right\}
$$

\n(b) $W = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} : 5x - 1 = y + 2z \right\}$
\n(c) $W = \left\{ \begin{bmatrix} x \\ y \\ x + y \end{bmatrix} : x, y \text{ in } \mathbb{R} \right\}$

Example 9. Find an explicit description of $\text{Nul}(A)$ where

$$
A = \left[\begin{array}{rrr} 1 & 3 & 5 & 0 \\ 0 & 1 & 4 & -2 \end{array} \right].
$$