Organizational

• Interested in joining class committee?

meet ~ 3 times to discuss ideas you may have for improving class

Next: bases, dimension and such

http://abstrusegoose.com/235

Solving Ax = 0 and Ax = b

Column spaces

Definition 1. The column space Col(A) of a matrix A is the span of the columns of A. If $A = [\mathbf{a}_1 \dots \mathbf{a}_n]$, then $Col(A) = span\{\mathbf{a}_1, \dots, \mathbf{a}_n\}$.

• In other words, **b** is in Col(A) if and only if Ax = b has a solution.

Why? Because $Ax = x_1a_1 + ... + x_na_n$ is the linear combination of columns of A with coefficients given by x.

• If A is $m \times n$, then $\operatorname{Col}(A)$ is a subspace of \mathbb{R}^m .

Why? Because any span is a space.

Example 2. Find a matrix A such that $W = \operatorname{Col}(A)$ where

$$W = \left\{ \begin{bmatrix} 2x - y \\ 3y \\ 7x + y \end{bmatrix} : x, y \text{ in } \mathbb{R} \right\}.$$

Solution. Note that

$$\begin{bmatrix} 2x-y\\ 3y\\ 7x+y \end{bmatrix} = x \begin{bmatrix} 2\\ 0\\ 7 \end{bmatrix} + y \begin{bmatrix} -1\\ 3\\ 1 \end{bmatrix}.$$

Hence,

$$W = \operatorname{span}\left\{ \begin{bmatrix} 2\\0\\7 \end{bmatrix}, \begin{bmatrix} -1\\3\\1 \end{bmatrix} \right\} = \operatorname{Col}\left(\begin{bmatrix} 2 & -1\\0 & 3\\7 & 1 \end{bmatrix} \right).$$

Definition 3. The **null space** of a matrix A is

$$\operatorname{Nul}(A) = \{ \boldsymbol{x} : A \boldsymbol{x} = \boldsymbol{0} \}.$$

In other words, if A is $m \times n$, then its null space consists of those vectors $\boldsymbol{x} \in \mathbb{R}^n$ which solve the **homogeneous** equation $A\boldsymbol{x} = \boldsymbol{0}$.

Theorem 4. If A is $m \times n$, then Nul(A) is a subspace of \mathbb{R}^n .

Proof. We check that Nul(A) satisfies the conditions of a subspace:

- Nul(A) contains **0** because $A\mathbf{0} = \mathbf{0}$.
- If $A\mathbf{x} = \mathbf{0}$ and $A\mathbf{y} = \mathbf{0}$, then $A(\mathbf{x} + \mathbf{y}) = A\mathbf{x} + A\mathbf{y} = \mathbf{0}$.

Hence, Nul(A) is closed under addition.

• If $A\mathbf{x} = \mathbf{0}$, then $A(c\mathbf{x}) = cA\mathbf{x} = \mathbf{0}$.

Hence, Nul(A) is closed under scalar multiplication.

Solving Ax = 0 yields an *explicit description* of Nul(A).

By that we mean a description as the span of some vectors.

Example 5. Find an explicit description of Nul(A) where

$$A = \left[\begin{array}{rrrr} 3 & 6 & 6 & 3 & 9 \\ 6 & 12 & 13 & 0 & 3 \end{array} \right]$$

Solution.

$$\begin{bmatrix} 3 & 6 & 6 & 3 & 9 \\ 6 & 12 & 13 & 0 & 3 \end{bmatrix} \xrightarrow{R2 \to R2 - 2R1} \begin{bmatrix} 3 & 6 & 6 & 3 & 9 \\ 0 & 0 & 1 & -6 & -15 \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & &$$

From the RREF we read off a parametric description of the solutions x to Ax = 0. Note that x_2 , x_4 , x_5 are free.

$$\boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} -2x_2 - 13x_4 - 33x_5 \\ x_2 \\ 6x_4 + 15x_5 \\ x_4 \\ x_5 \end{bmatrix}$$
$$= x_2 \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -13 \\ 0 \\ 6 \\ 1 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} -33 \\ 0 \\ 15 \\ 0 \\ 1 \end{bmatrix}$$

In other words,

$$\operatorname{Nul}(A) = \operatorname{span} \left\{ \begin{bmatrix} -2\\1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} -13\\0\\6\\1\\0 \end{bmatrix}, \begin{bmatrix} -33\\0\\15\\0\\1 \end{bmatrix} \right\}.$$

Note. The number of vectors in the spanning set for Nul(A) as derived above (which is as small as possible) equals the number of free variables in Ax = 0.

Another look at solutions to Ax = b

Theorem 6. Let \boldsymbol{x}_p be a solution of the equation $A\boldsymbol{x} = \boldsymbol{b}$.

Then every solution to Ax = b is of the form $x = x_p + x_n$, where x_n is a solution to the **homogeneous** equation Ax = 0.

- In other words, $\{\boldsymbol{x} : A\boldsymbol{x} = \boldsymbol{b}\} = \boldsymbol{x}_p + \operatorname{Nul}(A)$.
- We often call \boldsymbol{x}_p a particular solution.

The theorem then says that every solution to Ax = b is the sum of a fixed chosen particular solution and some solution to Ax = 0.

Proof. Let x be another solution to Ax = b. We need to show that $x_n = x - x_p$ is in Nul(A).

$$A(\boldsymbol{x}-\boldsymbol{x}_p) = A\boldsymbol{x} - A\boldsymbol{x}_p = \boldsymbol{b} - \boldsymbol{b} = \boldsymbol{0}$$

- 5	-	-	٦	
н				
н				
н				

Example 7. Let $A =$	$\begin{bmatrix} 1\\ 2\\ -1 \end{bmatrix}$	${3 \atop 6 \\ -3}$	${3 \over 9} \\ {3}$	2 7 4	and $b =$	$\begin{bmatrix} 1\\5\\5 \end{bmatrix}$	
	L –		Ŭ.,			L ~ _	1

Using the RREF, find a parametric description of the solutions to Ax = b:

$$\begin{bmatrix} 1 & 3 & 3 & 2 & 1 \\ 2 & 6 & 9 & 7 & 5 \\ -1 & -3 & 3 & 4 & 5 \end{bmatrix} \xrightarrow{R_2 \to R_2 - 2R_1}_{\underset{\longrightarrow}{R_3 \to R_3 + R_1}} \begin{bmatrix} 1 & 3 & 3 & 2 & 1 \\ 0 & 0 & 3 & 3 & 3 \\ 0 & 0 & 6 & 6 & 6 \end{bmatrix}$$
$$\xrightarrow{R_3 \to R_3 - 2R_2}_{\underset{\longrightarrow}{\longrightarrow}} \begin{bmatrix} 1 & 3 & 3 & 2 & 1 \\ 0 & 0 & 3 & 3 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
$$\xrightarrow{R_2 \to \frac{1}{3}R_2}_{\underset{\longrightarrow}{\longrightarrow}} \begin{bmatrix} 1 & 3 & 3 & 2 & 1 \\ 0 & 0 & 3 & 3 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
$$\xrightarrow{R_1 \to R_1 - 3R_2}_{\underset{\longrightarrow}{\longrightarrow}} \begin{bmatrix} 1 & 3 & 0 & -1 & -2 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Every solution to Ax = b is therefore of the form:

$$\boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -2 - 3x_2 + x_4 \\ x_2 \\ 1 - x_4 \\ x_4 \end{bmatrix}$$

Armin Straub astraub@illinois.edu

We can see nicely how every solution is the sum of a particular solution \boldsymbol{x}_p and solutions to $A\boldsymbol{x} = \boldsymbol{0}$.

Note. A convenient way to just find a particular solution is to set all free variables to zero (here, $x_2 = 0$ and $x_4 = 0$).

Of course, any other choice for the free variables will result in a particular solution.

For instance, $x_2 = 1$ and $x_4 = 1$ we would get $\boldsymbol{x}_p = \begin{bmatrix} -4 \\ 1 \\ 0 \\ 1 \end{bmatrix}$.

Practice problems

- True or false?
 - The solutions to the equation Ax = b form a vector space. No, with the only exception of b = 0.
 - The solutions to the equation Ax = 0 form a vector space. Yes. This is the null space Nul(A).

Example 8. Is the given set W a vector space?

If possible, express W as the column or null space of some matrix A.

(a)
$$W = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} : 5x = y + 2z \right\}$$

(b) $W = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} : 5x - 1 = y + 2z \right\}$
(c) $W = \left\{ \begin{bmatrix} x \\ y \\ x + y \end{bmatrix} : x, y \text{ in } \mathbb{R} \right\}$

Example 9. Find an explicit description of Nul(A) where

$$A = \left[\begin{array}{rrrr} 1 & 3 & 5 & 0 \\ 0 & 1 & 4 & -2 \end{array} \right].$$