Review

• Every solution to Ax = b is the sum of a fixed chosen particular solution and some solution to Ax = 0.

For instance, let $A = \begin{bmatrix} 1 & 3 & 3 & 2 \\ 2 & 6 & 9 & 7 \\ -1 & -3 & 3 & 4 \end{bmatrix}$ and $\boldsymbol{b} = \begin{bmatrix} 1 \\ 5 \\ 5 \end{bmatrix}$.

Every solution to Ax = b is of the form:

$$\boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -2 - 3x_2 + x_4 \\ x_2 \\ 1 - x_4 \\ x_4 \end{bmatrix} = \begin{bmatrix} -2 \\ 0 \\ 1 \\ 0 \\ x_p \end{bmatrix} + \underbrace{x_2 \begin{bmatrix} -3 \\ 1 \\ 0 \\ 0 \end{bmatrix}}_{\text{elements of Nul}(A)} + \underbrace{x_4 \begin{bmatrix} 1 \\ 0 \\ -1 \\ 1 \end{bmatrix}}_{\text{elements of Nul}(A)}$$

• Is span $\left\{ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\3\\3 \end{bmatrix}, \begin{bmatrix} -1\\1\\3\\3 \end{bmatrix} \right\}$ equal to \mathbb{R}^3 ?

Linear independence

Review.

• $\operatorname{span}\{\boldsymbol{v}_1, \boldsymbol{v}_2, ..., \boldsymbol{v}_m\}$ is the set of all linear combinations

$$c_1\boldsymbol{v}_1+c_2\boldsymbol{v}_2+\ldots+c_m\boldsymbol{v}_m.$$

• $\operatorname{span}\{\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_m\}$ is a vector space.

Example 1. Is span $\left\{ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\3\\3 \end{bmatrix}, \begin{bmatrix} -1\\1\\3\\3 \end{bmatrix} \right\}$ equal to \mathbb{R}^3 ?

Solution. Recall that the span is equal to

$$\left\{ \begin{bmatrix} 1 & 1 & -1 \\ 1 & 2 & 1 \\ 1 & 3 & 3 \end{bmatrix} \boldsymbol{x} : \boldsymbol{x} \text{ in } \mathbb{R}^3 \right\}.$$

Hence, the span is equal to \mathbb{R}^3 if and only if the system with augmented matrix

is consistent for all b_1, b_2, b_3 .

Armin Straub astraub@illinois.edu Gaussian elimination:

$$\begin{bmatrix} 1 & 1 & -1 & b_1 \\ 1 & 2 & 1 & b_2 \\ 1 & 3 & 3 & b_3 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 1 & -1 & b_1 \\ 0 & 1 & 2 & b_2 - b_1 \\ 0 & 2 & 4 & b_3 - b_1 \end{bmatrix}$$
$$\implies \begin{bmatrix} 1 & 1 & -1 & b_1 \\ 0 & 1 & 2 & b_2 - b_1 \\ 0 & 0 & 0 & b_3 - 2b_2 + b_1 \end{bmatrix}$$

The system is only consistent if $b_3 - 2b_2 + b_1 = 0$. Hence, the span does not equal all of \mathbb{R}^3 .

• What went "wrong"?

Well, the three vectors in the span satisfy

$$\begin{bmatrix} -1\\1\\3 \end{bmatrix} = -3\begin{bmatrix} 1\\1\\1 \end{bmatrix} + 2\begin{bmatrix} 1\\2\\3 \end{bmatrix}.$$

- Hence, span $\left\{ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} -1\\1\\3\\3 \end{bmatrix} \right\} = \operatorname{span} \left\{ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\3 \end{bmatrix} \right\}.$
- We are going to say that the three vectors are linearly dependent because they satisfy

$$-3\begin{bmatrix}1\\1\\1\end{bmatrix}+2\begin{bmatrix}1\\2\\3\end{bmatrix}-\begin{bmatrix}-1\\1\\3\end{bmatrix}=\mathbf{0}.$$

Definition 2. Vectors $v_1, ..., v_p$ are said to be **linearly independent** if the equation

$$x_1 \boldsymbol{v}_1 + x_2 \boldsymbol{v}_2 + \ldots + x_p \boldsymbol{v}_p = \boldsymbol{0}$$

has only the trivial solution (namely, $x_1 = x_2 = ... = x_p = 0$).

Likewise, $v_1, ..., v_p$ are said to be **linearly dependent** if there exist coefficients $x_1, ..., x_p$, not all zero, such that

$$x_1 \boldsymbol{v}_1 + x_2 \boldsymbol{v}_2 + \ldots + x_p \boldsymbol{v}_p = \boldsymbol{0}.$$

 $\operatorname{span}\left\{ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} -1\\1\\3\\3 \end{bmatrix} \right\}$

Example 3.

- Are the vectors $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$, $\begin{bmatrix} 1\\2\\3 \end{bmatrix}$, $\begin{bmatrix} -1\\1\\3 \end{bmatrix}$ independent?
- If possible, find a linear dependence relation among them.

Solution. We need to check whether the equation

	1		1		-1		0
x_1	1	$+x_{2}$	2	$+x_{3}$	1	=	0
	1		3		3		0

has more than the trivial solution.

In other words, the three vectors are independent if and only if the system

$$\begin{bmatrix} 1 & 1 & -1 \\ 1 & 2 & 1 \\ 1 & 3 & 3 \end{bmatrix} \boldsymbol{x} = \boldsymbol{0}$$

has no free variables.

To find out, we reduce the matrix to echelon form:

Γ	1	1	-1		1	1	-1		1	1	-1^{-1}]
	1	2	1	$\sim \rightarrow$	0	1	2	\rightsquigarrow	0	1	2	
L	1	3	3		0	2	4		0	0	0	

Since there is a column without pivot, we do have a free variable.

Hence, the three vectors are not linearly independent.

To find a linear dependence relation, we solve this system.

Initial steps of Gaussian elimination are as before:

$$\begin{bmatrix} 1 & 1 & -1 & | & 0 \\ 1 & 2 & 1 & | & 0 \\ 1 & 3 & 3 & | & 0 \end{bmatrix} \rightsquigarrow \dots \rightsquigarrow \begin{bmatrix} 1 & 1 & -1 & | & 0 \\ 0 & 1 & 2 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 0 & -3 & | & 0 \\ 0 & 1 & 2 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

 x_3 is free. $x_2 = -2x_3$, and $x_1 = 3x_3$. Hence, for any x_3 ,

$$3x_3\begin{bmatrix}1\\1\\1\end{bmatrix} - 2x_3\begin{bmatrix}1\\2\\3\end{bmatrix} + x_3\begin{bmatrix}-1\\1\\3\end{bmatrix} = \begin{bmatrix}0\\0\\0\end{bmatrix}.$$

Since we are only interested in one linear combination, we can set, say, $x_3 = 1$:

	1		1		-1		0	
3	1	-2	2	+	1	=	0	
	1		3		3		0	

Linear independence of matrix columns

• Note that a linear dependence relation, such as

$$3\begin{bmatrix}1\\1\\1\end{bmatrix}-2\begin{bmatrix}1\\2\\3\end{bmatrix}+\begin{bmatrix}-1\\1\\3\end{bmatrix}=\mathbf{0},$$

can be written in matrix form as

[1 1]	-1]	3]
1 2	1	-2	=0.
1 3	3	1	

• Hence, each linear dependence relation among the columns of a matrix A corresponds to a nontrivial solution to Ax = 0.

Theorem 4. Let A be an $m \times n$ matrix.The columns of A are linearly independent. $\iff Ax = 0$ has only the solution x = 0. $\iff Nul(A) = \{0\}$ $\iff A$ has n pivots.

Example 5. Are the vectors $\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$, $\begin{bmatrix} 1\\2\\3\\3 \end{bmatrix}$, $\begin{bmatrix} -1\\2\\3\\3 \end{bmatrix}$ independent?

Solution. Put the vectors in a matrix, and produce an echelon form:

$1 \ 1 \ -1$		1 1	-1		1	1	-1
$1 \ 2 \ 2$	$\sim \rightarrow$	0 1	3	$\sim \rightarrow$	0	1	3
133		$\begin{bmatrix} 0 & 2 \end{bmatrix}$	4		0	0	-2

Since each column contains a pivot, the three vectors are independent.

Example 6. (once again, short version)

Are the vectors $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$, $\begin{bmatrix} 1\\2\\3 \end{bmatrix}$, $\begin{bmatrix} -1\\1\\3 \end{bmatrix}$ independent?

Solution. Put the vectors in a matrix, and produce an echelon form:

$\begin{bmatrix} 1 & 1 & -1 \end{bmatrix}$		1 1	-1		1	1	-1]
1 2 1	\rightsquigarrow	0 1	2	\rightsquigarrow	0	1	2
1 3 3		0 2	4		0	0	0

Since the last column does not contain a pivot, the three vectors are linearly dependent.

Special cases

- A set of a single nonzero vector $\{v_1\}$ is always linearly independent. Why? Because $x_1v_1 = 0$ only for $x_1 = 0$.
- A set of two vectors $\{v_1, v_2\}$ is linearly independent if and only if neither of the vectors is a multiple of the other.

Why? Because if $x_1 \boldsymbol{v}_1 + x_2 \boldsymbol{v}_2 = 0$ with, say, $x_2 \neq 0$, then $\boldsymbol{v}_2 = -\frac{x_1}{x_2} \boldsymbol{v}_1$.

• A set of vectors $\{v_1, ..., v_p\}$ containing the zero vector is linearly dependent.

Why? Because if, say, $\boldsymbol{v}_1 = \boldsymbol{0}$, then $\boldsymbol{v}_1 + 0\boldsymbol{v}_2 + \ldots + 0\boldsymbol{v}_p = \boldsymbol{0}$.

• If a set contains more vectors than there are entries in each vector, then the set is linearly dependent. In other words:

Any set $\{v_1, ..., v_p\}$ of vectors in \mathbb{R}^n is linearly dependent if p > n.

Why?

Let A be the matrix with columns $v_1, ..., v_p$. This is a $n \times p$ matrix.

The columns are linearly independent if and only if each column contains a pivot.

If p > n, then the matrix can have at most n pivots.

Thus not all p columns can contain a pivot.

In other words, the columns have to be linearly dependent.

Example 7. With the least amount of work possible, decide which of the following sets of vectors are linearly independent.

 $(\mathsf{a}) \left\{ \begin{bmatrix} 3\\2\\1 \end{bmatrix}, \begin{bmatrix} 9\\6\\4 \end{bmatrix} \right\}$

Linearly independent, because the two vectors are not multiples of each other.

(b)
$$\left\{ \begin{bmatrix} 3\\2\\1 \end{bmatrix} \right\}$$

Linearly independent, because it is a single nonzero vector.

(c) columns of $\begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 8 & 7 & 6 \end{bmatrix}$

Linearly dependent, because these are more than 3 (namely, 4) vectors in \mathbb{R}^3 .

 $(\mathsf{d}) \left\{ \begin{bmatrix} 3\\2\\1 \end{bmatrix}, \begin{bmatrix} 9\\6\\4 \end{bmatrix}, \begin{bmatrix} 0\\0\\0 \end{bmatrix} \right\}$

Linearly dependent, because the set includes the zero vector.