Review

• Vectors $\boldsymbol{v}_1,...,\boldsymbol{v}_p$ are linearly dependent if

 $x_1v_1 + x_2v_2 + \ldots + x_pv_p = 0,$

and not all the coefficients are zero.

• The columns of A are linearly independent

 \iff each column of A contains a pivot.

• Are the vectors Г \mathbf{I} 1 1 1 1 \vert , Г \mathbf{I} 1 2 3 1 \vert , $\sqrt{ }$ $\overline{}$ −1 1 3 T | independent? $\sqrt{ }$ \mathbf{I} 1 1 −1 1 2 1 1 3 3 1 \sim $\sqrt{ }$ Τ 1 1 −1 0 1 2 0 2 4 1 \sim $\sqrt{ }$ Τ 1 1 −1 0 1 2 0 0 0 1 \mathbf{I}

So: no, they are dependent! (Coeff's $x_3 = 1$, $x_2 = -2$, $x_1 = 3$)

• Any set of 11 vectors in \mathbb{R}^{10} is linearly dependent.

A basis of a vector space

Definition 1. A set of vectors $\{v_1, ..., v_p\}$ in V is a basis of V if

- $\bullet \quad V = \text{span}\{\boldsymbol{v}_1,...,\boldsymbol{v}_p\}$, and
- the vectors $\boldsymbol{v}_1,...,\boldsymbol{v}_p$ are linearly independent.

In other words, $\{\bm v_1,...,\bm v_p\}$ in V is a basis of V if and only if every vector $\bm w$ in V can be uniquely expressed as $\boldsymbol{w} \!=\! c_1 \boldsymbol{v}_1 + ... + c_p \boldsymbol{v}_p.$

Example 2. Let
$$
e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}
$$
, $e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $e_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$.

Show that $\{e_1, e_2, e_3\}$ is a basis of \mathbb{R}^3 .

It is called the standard basis.

Solution.

- Clearly, $\text{span}\{\boldsymbol{e}_1,\boldsymbol{e}_2,\boldsymbol{e}_3\}=\mathbb{R}^3$.
- ${e_1, e_2, e_3}$ are independent, because

has a pivot in each column.

Definition 3. *V* is said to have **dimension** p if it has a basis consisting of p vectors.

This definition makes sense because if V has a basis of p vectors, then every basis of V has p vectors. Why? (Think of $V = \mathbb{R}^3$.)

A basis of \mathbb{R}^3 cannot have more than 3 vectors, because any set of 4 or more vectors in \mathbb{R}^3 is linearly dependent.

A basis of \mathbb{R}^3 cannot have less than 3 vectors, because 2 vectors span at most a plane (challenge: can you think of an argument that is more "rigorous"?).

```
Example 4. \mathbb{R}^3 has dimension 3.
```
Indeed, the standard basis $\sqrt{ }$ $\overline{}$ 1 0 0 1 \vert , $\sqrt{ }$ $\overline{}$ 0 1 0 1 \vert , Г $\overline{1}$ 0 0 1 1 has three elements.

Likewise, \mathbb{R}^n has dimension n .

Example 5. Not all vector spaces have a finite basis. For instance, the vector space of all polynomials has *infinite dimension*.

Its standard basis is $1, t, t^2, t^3, ...$

This is indeed a basis, because any polynomial can be written as a unique linear combination: $p(t) = a_0 + a_1t + \ldots + a_nt^n$ for some n.

Recall that vectors in V form a **basis** of V if they span V and if they are linearly independent. If we know the dimension of V , we only need to check one of these two conditions:

- A set of d vectors in V are a basis if they span V.
- A set of d vectors in V are a basis if they are linearly independent.

Why?

- If the d vectors were not independent, then $d-1$ of them would still span V. In the end, we would find a basis of less than d vectors.
- If the d vectors would not span V, then we could add another vector to the set and have $d+1$ independent ones.

Example 7. Are the following sets a basis for \mathbb{R}^3 ?

(a) $\left\{\left[\right]$ 1 2 0 1 \vert , $\sqrt{ }$ $\overline{1}$ 0 1 1 1 \mathbf{I})

No, the set has less than 3 elements.

No, the set has more than 3 elements.

The set has 3 elements. Hence, it is a basis if and only if the vectors are independent.

Since each column contains a pivot, the three vectors are independent. Hence, this is a basis of \mathbb{R}^3 .

Example 8. Let P_2 be the space of polynomials of degree at most 2.

- What is the dimension of P_2 ?
- Is $\{t, 1-t, 1+t-t^2\}$ a basis of \mathbb{P}_2 ?

Solution.

• The standard basis for \mathbb{P}_2 is $\{1, t, t^2\}$.

This is indeed a basis because every polynomial

```
a_0 + a_1t + a_2t^2
```
can clearly be written as a linear combination of $1,t,t^2$ in a unique way.

Hence, P_2 has dimension 3.

• The set $\{t, 1-t, 1+t-t^2\}$ has 3 elements. Hence, it is a basis if and only if the three polynomials are linearly independent.

We need to check whether

$$
\underbrace{x_1t + x_2(1-t) + x_3(1+t-t^2)}_{(x_2+x_3)+(x_1-x_2+x_3)t-x_3t^2} = 0
$$

has only the trivial solution $x_1 = x_2 = x_3 = 0$. We get the equations

$$
x_2 + x_3 = 0
$$

$$
x_1 - x_2 + x_3 = 0
$$

$$
-x_3 = 0
$$

which clearly only have the trivial solution. (If you don't see it, solve the system!) Hence, $\{t, 1-t, 1+t-t^2\}$ is a basis of \mathbb{P}_2 .

Shrinking and expanding sets of vectors

We can find a basis for $\overline{V = \operatorname{span}\{\boldsymbol{v}_1, ..., \boldsymbol{v}_p\}}$ by discarding, if necessary, some of the vectors in the spanning set.

Example 9. Produce a basis of \mathbb{R}^2 from the vectors

 $v_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ 2 $\Big\}, \quad v_2 = \Big\lceil \begin{array}{c} -2 \\ 4 \end{array} \Big\rceil$ -4 $\begin{bmatrix} 1 \\ v_3 \end{bmatrix}$ 1 1 .

Solution. Three vectors in \mathbb{R}^2 have to be linearly dependent.

Here, we notice that $v_2 = -2v_1$.

The remaining vectors $\{\boldsymbol{v}_1,\boldsymbol{v}_3\}$ are a basis of \mathbb{R}^2 , because the two vectors are clearly independent.

Checking our understanding

Example 10. Subspaces of \mathbb{R}^3 can have dimension $0, 1, 2, 3$.

- The only 0-dimensional subspace is $\{0\}$.
- A 1-dimensional subspace is of the form $\operatorname{span}\{\bm{v}\}$ where $\bm{v}\neq 0.$

These subspaces are lines through the origin.

• A 2-dimensional subspace is of the form $\text{span}\{v, w\}$ where v and w are not multiples of each other.

These subspaces are planes through the origin.

• The only 3-dimensional subspace is \mathbb{R}^3 itself.

True or false?

• Suppose that V has dimension n. Then any set in V containing more than n vectors must be linearly dependent.

That's correct.

- The space \mathbb{P}_n of polynomials of degree at most n has dimension $n+1$. True, as well. A basis is $\{1, t, t^2, ..., t^n\}$.
- The vector space of functions $f: \mathbb{R} \to \mathbb{R}$ is infinite-dimensional.

Yes. A still-infinite-dimensional subspace are the polynomials.

• Consider $V = \text{span}\{\boldsymbol{v}_1,...,\boldsymbol{v}_p\}$. If one of the vectors, say \boldsymbol{v}_k , in the spanning set is a linear combination of the remaining ones, then the remaining vectors still span V .

True, v_k is not adding anything new.