Review

- $\bullet \quad \{\boldsymbol{v}_1, ..., \boldsymbol{v}_p\}$ is a **basis** of V if the vectors
	- \circ span V , and
	- are independent.
- The **dimension** of V is the number of elements in a basis.
- The columns of A are linearly independent
	- \iff each column of A contains a pivot.

Warmup

Example 1. Find a basis and the dimension of

$$
W = \left\{ \left[\begin{array}{c} a+b+2c \\ 2a+2b+4c+d \\ b+c+d \\ 3a+3c+d \end{array} \right] : a,b,c,d \text{ real} \right\}.
$$

Solution.

First, note that

$$
W = \text{span}\left\{ \begin{bmatrix} 1 \\ 2 \\ 0 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 4 \\ 1 \\ 3 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix} \right\}.
$$

Is $\dim W = 4$? No, because the third vector is the sum of the first two. Suppose we did not notice

$$
A = \begin{bmatrix} 1 & 1 & 2 & 0 \\ 2 & 2 & 4 & 1 \\ 0 & 1 & 1 & 1 \\ 3 & 0 & 3 & 1 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & -3 & -3 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}
$$

$$
\rightsquigarrow \begin{bmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & -3 & -3 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}
$$

$$
\rightsquigarrow \begin{bmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix}
$$

Not a pivot in every column, hence the 4 vectors are dependent.

[Not necessary here, but:

To get a relation, solve $Ax = 0$. Set free variable $x_3 = 1$.

Then $x_4 = 0$, $x_2 = -x_3 = -1$ and $x_1 = -x_2 - 2x_3 = -1$. The relation is

$$
-\begin{bmatrix} 1 \\ 2 \\ 0 \\ 3 \end{bmatrix} - \begin{bmatrix} 1 \\ 2 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 4 \\ 1 \\ 3 \end{bmatrix} + 0 \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \mathbf{0}.
$$

Precisely, what we "noticed" to begin with.]

Hence, a basis for W is
$$
\begin{bmatrix} 1 \\ 2 \\ 0 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}
$$
 and $\dim W = 3$.

It follows from the echelon form that these vectors are independent.

Every set of linearly independent vectors can be extended to a basis.

In other words, let $\{\boldsymbol{v}_1,...,\boldsymbol{v}_p\}$ be linearly independent vectors in $V.$ If V has dimension d , then we can find vectors $\bm{v}_{p+1},...,\bm{v}_d$ such that $\{\bm{v}_1,...,\bm{v}_d\}$ is a basis of $V.$

Example 2. Consider

$$
H = \text{span}\left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\}.
$$

- Give a basis for H . What is the dimension of H ?
- Extend the basis of H to a basis of \mathbb{R}^3 .

Solution.

The vectors are independent. By definition, they span H .

Therefore, $\left\{\right\lceil$ 1 $\overline{0}$ $\overline{0}$ 1 \vert , Г \mathbf{I} 1 1 1 1 \mathbf{I}) is a basis for H .

In particular, $\dim H = 2$.

• \int $\overline{1}$ 1 $\overline{0}$ $\overline{0}$ l \vert , $\sqrt{ }$ $\overline{1}$ 1 1 1 1 \mathbf{I}) is not a basis for \mathbb{R}^3 . Why?

Because a basis for \mathbb{R}^3 needs to contain 3 vectors.

Or, because, for instance, Г \mathbf{I} $\overline{0}$ $\overline{0}$ 1 1 is not in H .

So: just add this (or any other) missing vector!

By construction, $\left\{\right\}$ 1 $\overline{0}$ $\overline{0}$ 1 \vert , Г $\overline{1}$ 1 1 1 1 \vert , Г \mathbf{I} $\overline{0}$ $\overline{0}$ 1 1 \mathbf{I}) is independent.

Hence, this automatically is a basis of \mathbb{R}^3 .

Bases for column and null spaces

Bases for null spaces

To find a basis for $\text{Nul}(A)$:

- find the parametric form of the solutions to $Ax = 0$,
- express solutions x as a linear combination of vectors with the free variables as coefficients;
- these vectors form a basis of $\text{Nul}(A)$.

Example 3. Find a basis for $\text{Nul}(A)$ with

$$
A = \left[\begin{array}{rrrr} 3 & 6 & 6 & 3 & 9 \\ 6 & 12 & 15 & 0 & 3 \end{array} \right].
$$

Solution.

$$
\begin{bmatrix} 3 & 6 & 6 & 3 & 9 \ 6 & 12 & 15 & 0 & 3 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 3 & 6 & 6 & 3 & 9 \ 0 & 0 & 3 & -6 & -15 \ 0 & 0 & 1 & -2 & -5 \ 0 & 0 & 1 & -2 & -5 \end{bmatrix}
$$

$$
\rightsquigarrow \begin{bmatrix} 1 & 2 & 2 & 1 & 3 \ 0 & 0 & 1 & -2 & -5 \ 0 & 0 & 1 & -2 & -5 \end{bmatrix}
$$

The solutions to
$$
Ax = 0
$$
 are:

$$
\boldsymbol{x} = \begin{bmatrix} -2x_2 - 5x_4 - 13x_5 \\ x_2 \\ 2x_4 + 5x_5 \\ x_4 \\ x_5 \end{bmatrix} = x_2 \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -5 \\ 2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} -13 \\ 5 \\ 0 \\ 1 \end{bmatrix}
$$

Hence,
$$
Null(A) = span \begin{Bmatrix} -2 \\ 1 \\ 0 \\ 0 \\ 0 \end{Bmatrix}, \begin{bmatrix} -5 \\ 0 \\ 2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -13 \\ 0 \\ 5 \\ 0 \\ 1 \end{bmatrix}.
$$

These vectors are clearly independent.

If you don't see it, do compute an echelon form! (permute first and third row to the bottom) Better yet: note that the first vector corresponds to the solution with $x_2 = 1$ and the other free variables $x_4 = 0$, $x_5 = 0$. The second vector corresponds to the solution with $x_4 = 1$ and the other free variables $x_2=0, x_5=0$. The third vector ...

Hence,
$$
\left\{\begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -5 \\ 0 \\ 2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -13 \\ 0 \\ 5 \\ 0 \\ 1 \end{bmatrix} \right\}
$$
 is a basis for $Nul(A)$.

Armin Straub astraub@illinois.edu

Bases for column spaces

Recall that the columns of A are independent

 $\iff Ax = 0$ has only the trivial solution (namely, $x = 0$),

 \iff A has no free variables.

A basis for $Col(A)$ is given by the pivot columns of A.

Example 4. Find a basis for $Col(A)$ with

$$
A = \begin{bmatrix} 1 & 2 & 0 & 4 \\ 2 & 4 & -1 & 3 \\ 3 & 6 & 2 & 22 \\ 4 & 8 & 0 & 16 \end{bmatrix}.
$$

Solution.

$$
\begin{bmatrix} 1 & 2 & 0 & 4 \ 2 & 4 & -1 & 3 \ 3 & 6 & 2 & 22 \ 4 & 8 & 0 & 16 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 2 & 0 & 4 \ 0 & 0 & -1 & -5 \ 0 & 0 & 2 & 10 \ 0 & 0 & 0 & 0 \ 0 & 0 & -1 & -5 \ 0 & 0 & -1 & -5 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \end{bmatrix}
$$

The pivot columns are the first and third.

Hence, a basis for $\operatorname{Col}(A)$ is $\sqrt{ }$ \int \mathcal{L} $\sqrt{ }$ \parallel 1 2 3 4 1 $\left| \cdot \right|$, $\sqrt{ }$ \parallel $\overline{0}$ −1 $\overline{2}$ $\overline{0}$ 1 \parallel \mathcal{L} \mathcal{L} \int .

Warning: For the basis of $Col(A)$, you have to take the columns of A, not the columns of an echelon form.

Row operations do not preserve the column space.

[For instance, $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ 0 $R^{1} \leftrightarrow R^{2}$ [0 1 $\mathrm{\,|}$ have different column spaces (of the same dimension).]