Linear transformations

- A map $T: V \rightarrow W$ between vector spaces is **linear** if
 - $\circ \quad T(\boldsymbol{x} + \boldsymbol{y}) = T(\boldsymbol{x}) + T(\boldsymbol{y})$
 - $\circ T(c\boldsymbol{x}) = cT(\boldsymbol{x})$
- Let A be an $m \times n$ matrix. $T: \mathbb{R}^n \to \mathbb{R}^m$ defined by T(x) = Ax is linear.
- $T: \mathbb{P}_n \to \mathbb{P}_{n-1}$ defined by T(p(t)) = p'(t) is linear.
- The only linear maps $T: \mathbb{R} \to \mathbb{R}$ are $T(x) = \alpha x$. Recall that T(0) = 0 for linear maps.
- Linear maps $T: \mathbb{R}^2 \to \mathbb{R}$ are of the form $T\begin{pmatrix} x \\ y \end{pmatrix} = \alpha x + \beta y$. For instance, T(x, y) = xy is not linear: $T\begin{pmatrix} 2x \\ 2y \end{pmatrix} \neq 2T(x, y)$

Example 1. Let $V = \mathbb{R}^2$ and $W = \mathbb{R}^3$. Let T be the linear map such that

$$T\left(\left[\begin{array}{c}1\\1\end{array}\right]\right) = \left[\begin{array}{c}1\\0\\4\end{array}\right], \quad T\left(\left[\begin{array}{c}-1\\1\end{array}\right]\right) = \left[\begin{array}{c}1\\-2\\0\end{array}\right].$$

• What is $T\left(\begin{bmatrix} 0\\4 \end{bmatrix}\right)$? $\begin{bmatrix} 0\\4 \end{bmatrix} = 2\begin{bmatrix} 1\\1 \end{bmatrix} + 2\begin{bmatrix} -1\\1 \end{bmatrix}$ $T\left(\begin{bmatrix} 0\\4 \end{bmatrix}\right) = T\left(2\begin{bmatrix} 1\\1 \end{bmatrix} + 2\begin{bmatrix} -1\\1 \end{bmatrix}\right) = 2T\left(\begin{bmatrix} 1\\1 \end{bmatrix}\right) + 2T\left(\begin{bmatrix} -1\\1 \end{bmatrix}\right) = \begin{bmatrix} 2\\0\\8 \end{bmatrix} + \begin{bmatrix} 2\\-4\\0 \end{bmatrix} = \begin{bmatrix} 4\\-4\\8 \end{bmatrix}$

Let $\boldsymbol{x}_1, ..., \boldsymbol{x}_n$ be a basis for V. A linear map $T: V \to W$ is determined by the values $T(\boldsymbol{x}_1), ..., T(\boldsymbol{x}_n)$.

Why? Take any \boldsymbol{v} in V. Write $\boldsymbol{v} = c_1 \boldsymbol{x}_1 + ... + c_n \boldsymbol{x}_n$. (Possible, because $\{\boldsymbol{x}_1, ..., \boldsymbol{x}_n\}$ spans V.) By linearity of T,

$$T(\boldsymbol{v}) = T(c_1\boldsymbol{x}_1 + \ldots + c_n\boldsymbol{x}) = c_1T(\boldsymbol{x}_1) + \ldots + c_nT(\boldsymbol{x}_n).$$

Important geometric examples

We consider some linear maps $\mathbb{R}^2 \to \mathbb{R}^2$, which are defined by matrix multiplication, that is, by $\mathbf{x} \mapsto A\mathbf{x}$.

In fact: all linear maps $\mathbb{R}^n \to \mathbb{R}^m$ are given by $\boldsymbol{x} \mapsto A\boldsymbol{x}$, for some matrix A.

Example 2.

The matrix $A = \begin{bmatrix} c & 0 \\ 0 & c \end{bmatrix}$

- ... gives the map $\boldsymbol{x} \mapsto c \boldsymbol{x}$, i.e.
- ... stretches every vector in \mathbb{R}^2 by the same factor c.

- The matrix $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
- ... gives the map $\begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} y \\ x \end{bmatrix}$, i.e.
- ... reflects every vector in \mathbb{R}^2 through the line y = x.

Example 4.

- The matrix $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$
- ... gives the map $\left[\begin{array}{c} x\\ y \end{array}
 ight] \mapsto \left[\begin{array}{c} x\\ 0 \end{array}
 ight]$, i.e.
- ... projects every vector in \mathbb{R}^2 through onto the *x*-axis.

Example 5.

The matrix $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$... gives the map $\begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} -y \\ x \end{bmatrix}$, i.e. ... rotates every vector in \mathbb{R}^2 counter-clockwise by 90°.

Representing linear maps by matrices

Definition 6. (From linear maps to matrices)

Let $\boldsymbol{x}_1,...,\boldsymbol{x}_n$ be a basis for V, and $\boldsymbol{y}_1,...,\boldsymbol{y}_m$ a basis for W.

The matrix representing T with respect to these bases

- has n columns (one for each of the x_j),
- the *j*-th column has *m* entries $a_{1,j}, \ldots, a_{m,j}$ determined by

$$T(\boldsymbol{x}_j) = a_{1,j} \boldsymbol{y}_1 + \ldots + a_{m,j} \boldsymbol{y}_m.$$

Example 7.

Recall the map T given by $\begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} y \\ x \end{bmatrix}$.

(reflects every vector in \mathbb{R}^2 through the line y = x)

- Which matrix *A* represents *T* with respect to the standard bases?
- Which matrix *B* represents *T* with respect to the basis $\begin{bmatrix} 1\\1 \end{bmatrix}$, $\begin{bmatrix} -1\\1 \end{bmatrix}$?

Solution.

• $T\left(\begin{bmatrix} 1\\0 \end{bmatrix}\right) = \begin{bmatrix} 0\\1 \end{bmatrix}$. Hence, $A = \begin{bmatrix} 0 & *\\1 & * \end{bmatrix}$. $T\left(\begin{bmatrix} 0\\1 \end{bmatrix}\right) = \begin{bmatrix} 1\\0 \end{bmatrix}$. Hence, $A = \begin{bmatrix} 0 & 1\\1 & 0 \end{bmatrix}$.

If a linear map $T: \mathbb{R}^n \to \mathbb{R}^m$ is represented by the matrix A with respect to the standard bases, then $T(\mathbf{x}) = A\mathbf{x}$.

Matrix multiplication corresponds to function composition! That is, if T_1 , T_2 are represented by A_1 , A_2 , then $T_1(T_2(\boldsymbol{x})) = (A_1A_2)\boldsymbol{x}$.

•
$$T\left(\begin{bmatrix}1\\1\end{bmatrix}\right) = \begin{bmatrix}1\\1\end{bmatrix} = 1\begin{bmatrix}1\\1\end{bmatrix} + 0\begin{bmatrix}-1\\1\end{bmatrix}$$
. Hence, $B = \begin{bmatrix}1 & *\\ 0 & *\end{bmatrix}$.
 $T\left(\begin{bmatrix}-1\\1\end{bmatrix}\right) = \begin{bmatrix}1\\-1\end{bmatrix} = 0\begin{bmatrix}1\\1\end{bmatrix} - \begin{bmatrix}-1\\1\end{bmatrix}$. Hence, $B = \begin{bmatrix}1 & 0\\ 0 & -1\end{bmatrix}$.

Example 8. Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be the linear map such that

$$T\left(\left[\begin{array}{c}1\\0\end{array}\right]\right) = \left[\begin{array}{c}1\\2\\3\end{array}\right], \quad T\left(\left[\begin{array}{c}0\\1\end{array}\right]\right) = \left[\begin{array}{c}4\\0\\7\end{array}\right].$$

What is the matrix B representing T with respect to the following bases?

$$\begin{bmatrix} 1\\1\\1\\\mathbf{x}_1\\\mathbf{x}_2\\\mathbf{x}_2 \end{bmatrix} \text{ for } \mathbb{R}^2, \qquad \begin{bmatrix} 1\\1\\1\\1\\1\\\mathbf{y}_1\\\mathbf{y}_2\\\mathbf{y}_2\\\mathbf{y}_3 \end{bmatrix} \text{ for } \mathbb{R}^3.$$

Solution. This time:

$$T(\boldsymbol{x}_{1}) = T\left(\begin{bmatrix} 1\\1\\1 \end{bmatrix}\right) = T\left(\begin{bmatrix} 1\\0\\1 \end{bmatrix}\right) + T\left(\begin{bmatrix} 0\\1\\1 \end{bmatrix}\right)$$
$$= \begin{bmatrix} 1\\2\\3\\3 \end{bmatrix} + \begin{bmatrix} 4\\0\\7\\7 \end{bmatrix} = \begin{bmatrix} 5\\2\\10\\1 \end{bmatrix}$$
$$= 5\begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix} - 3\begin{bmatrix} 0\\1\\0\\1 \end{bmatrix} + 5\begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}$$
$$\implies B = \begin{bmatrix} 5 & *\\-3 & *\\5 & * \end{bmatrix}$$
$$T(\boldsymbol{x}_{2}) = T\left(\begin{bmatrix} -1\\2\\3\\3 \end{bmatrix} + 2\begin{bmatrix} 4\\0\\7\\1 \end{bmatrix}\right) = -T\left(\begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}\right) + 2T\left(\begin{bmatrix} 0\\1\\1 \end{bmatrix}\right)$$
$$= -\begin{bmatrix} 1\\2\\3\\3 \end{bmatrix} + 2\begin{bmatrix} 4\\0\\7\\1 \end{bmatrix} = \begin{bmatrix} 7\\-2\\11\\1 \end{bmatrix}$$
$$= 7\begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix} - 9\begin{bmatrix} 0\\1\\0\\1 \end{bmatrix} + 4\begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}$$
$$\implies B = \begin{bmatrix} 5 & 7\\-3 & -9\\5 & 4 \end{bmatrix}$$

can you see it? otherwise: do it!

Tedious, even in this simple example! (But we can certainly do it.)

A matrix representing T encodes in column j the coefficients of $T(x_j)$ expressed as a linear combination of $y_1, ..., y_m$.

Example 9. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the map which rotates a vector counter-clockwise by angle θ .

- Which matrix A represents T with respect to the standard bases?
- Verify that $T(\boldsymbol{x}) = A\boldsymbol{x}$.

Solution. Only keep reading if you need a hint!

```
The first basis vector \begin{bmatrix} 1\\0 \end{bmatrix} gets send to \begin{bmatrix} \cos\theta\\\sin\theta \end{bmatrix}.
Hence, the first column of A is ...
```