Linear transformations

- A map $T: V \to W$ between vector spaces is linear if
	- \circ $T(\boldsymbol{x} + \boldsymbol{y}) = T(\boldsymbol{x}) + T(\boldsymbol{y})$
	- \circ $T(cx) = cT(x)$
- Let A be an $m \times n$ matrix. $T: \mathbb{R}^n \to \mathbb{R}^m$ defined by $T(x) = Ax$ is linear.
- $T: \mathbb{P}_n \to \mathbb{P}_{n-1}$ defined by $T(p(t)) = p'(t)$ is linear.
- The only linear maps $T: \mathbb{R} \to \mathbb{R}$ are $T(x) = \alpha x$. Recall that $T(0) = 0$ for linear maps.
- Linear maps T : $\mathbb{R}^2 \to \mathbb{R}$ are of the form $T\binom{x}{y}$ \hat{y} \setminus $=\alpha x + \beta y.$ For instance, $T(x,y) = xy$ is not linear: $T\begin{pmatrix} 2x \ 2y \end{pmatrix}$ $\Big\} \neq 2T(x,y)$

Example 1. Let $V = \mathbb{R}^2$ and $W = \mathbb{R}^3$. Let T be the linear map such that

$$
T\left(\left[\begin{array}{c}1\\1\end{array}\right]\right) = \left[\begin{array}{c}1\\0\\4\end{array}\right], \quad T\left(\left[\begin{array}{c}-1\\1\end{array}\right]\right) = \left[\begin{array}{c}1\\-2\\0\end{array}\right].
$$

 $2y$

• What is $T(\begin{bmatrix} 0 \\ 4 \end{bmatrix})$ $\left[\begin{array}{c} 0 \ 4 \end{array} \right]$? $\begin{bmatrix} 0 \end{bmatrix}$ 4 $\left[-2\right]$ ¹ 1 -1 1 1 $T(\begin{bmatrix} 0 \\ 4 \end{bmatrix})$ $\binom{0}{4}$ = $T\left(2\begin{bmatrix}1\\1\end{bmatrix}\right)$ 1 -1 $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$ = 2T $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $\binom{1}{1}$ + 2T $\left(\begin{array}{c} -1 \\ 1 \end{array} \right)$ $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$ = Г \mathbf{I} $\overline{2}$ $\overline{0}$ 8 1 $|+$ T \mathbf{I} $\overline{2}$ -4 $\overline{0}$ 1 \vert = Г \mathbf{I} 4 -4 8 1 T

Let $\boldsymbol{x}_1,...,\boldsymbol{x}_n$ be a basis for V . A linear map $T: V \to W$ is determined by the values $T(\boldsymbol{x}_1), ..., T(\boldsymbol{x}_n).$

Why? Take any v in V . Write $\boldsymbol{v} = c_1 \boldsymbol{x}_1 + ... + c_n \boldsymbol{x}_n$. $\mathcal{L} + c_n \boldsymbol{x}_n.$ (Possible, because $\{\boldsymbol{x}_1,...,\boldsymbol{x}_n\}$ spans $V.$) By linearity of T ,

$$
T(\boldsymbol{v}) = T(c_1\boldsymbol{x}_1 + \ldots + c_n\boldsymbol{x}) = c_1T(\boldsymbol{x}_1) + \ldots + c_nT(\boldsymbol{x}_n).
$$

Important geometric examples

We consider some linear maps $\mathbb{R}^2\to\mathbb{R}^2$, which are defined by matrix multiplication, that is, by $x \mapsto Ax$.

In fact: all linear maps $\mathbb{R}^n \to \mathbb{R}^m$ are given by $x \mapsto Ax$, for some matrix A.

Example 2.

The matrix $A =$ $\begin{bmatrix} c & 0 \\ 0 & 0 \end{bmatrix}$ $0\;\;c$ 1

- \dots gives the map $\bm{x} \mapsto c\bm{x}$, i.e.
- \ldots stretches every vector in \mathbb{R}^2 by the same factor $c.$

Example 3.

- The matrix $A=$ $\left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right]$
- \ldots gives the map $\left[\begin{array}{c} x \ y \end{array} \right]$ \hat{y} $\rightarrow \lbrack y$ x \vert , i.e.
- ... reflects every vector in \mathbb{R}^2 through the line $y = x$.

Example 4.

- The matrix $A =$ $\left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right]$
- \ldots gives the map $\left[\begin{array}{c} x \ y \end{array} \right]$ \hat{y} $\Big] \mapsto \Big[\begin{array}{c} x \\ z \end{array} \Big]$ $\overline{0}$, i.e.
- \ldots projects every vector in \mathbb{R}^2 through onto the x -axis.

Example 5.

The matrix $A =$ $\left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right]$ \ldots gives the map $\left[\begin{array}{c} x \ y \end{array} \right]$ \hat{y} $\big] \mapsto \big[\begin{array}{c} -y \\ y \end{array} \big]$ x , i.e. \ldots rotates every vector in \mathbb{R}^2 counter-clockwise by 90° .

Representing linear maps by matrices

Definition 6. (From linear maps to matrices)

Let $\boldsymbol{x}_1,...,\boldsymbol{x}_n$ be a basis for V , and $\boldsymbol{y}_1,...,\boldsymbol{y}_m$ a basis for $W.$

The **matrix representing** T with respect to these bases

- has n columns (one for each of the x_j),
- the j-th column has m entries $a_{1,j},...,a_{m,j}$ determined by

$$
T(\boldsymbol{x}_j)\!=\!a_{1,\,j}\boldsymbol{y}_1\!+\!\ldots+a_{m,\,j}\boldsymbol{y}_m.
$$

Example 7.

Recall the map T given by $\left[\begin{array}{c} x \ y \end{array}\right]$ \hat{y} $\rightarrow \lbrack y$ x .

(reflects every vector in \mathbb{R}^2 through the line $y = x$)

- Which matrix A represents T with respect to the standard bases?
- Which matrix B represents T with respect to the basis $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ 1 $\Big\}, \Big[\begin{array}{c} -1 \\ -1 \end{array} \Big]$ 1 ?

Solution.

 \bullet $T\left(\begin{array}{cc} 1 \\ 0 \end{array}\right)$ $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ = $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ 1 . Hence, $A = \begin{bmatrix} 0 & * \\ 1 & * \end{bmatrix}$ 1 ∗ . $T(\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ = $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ $\overline{0}$ $\begin{bmatrix} . & \text{Hence, } A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}. \end{bmatrix}$

If a linear map $T: \mathbb{R}^n \to \mathbb{R}^m$ is represented by the matrix A with respect to the standard bases, then $T(\boldsymbol{x}) = A \boldsymbol{x}$.

Matrix multiplication corresponds to function composition! That is, if T_1 , T_2 are represented by A_1 , A_2 , then $T_1(T_2(\boldsymbol{x})) = (A_1A_2)\boldsymbol{x}$.

•
$$
T(\begin{bmatrix} 1 \\ 1 \end{bmatrix}) = \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 0 \begin{bmatrix} -1 \\ 1 \end{bmatrix}
$$
. Hence, $B = \begin{bmatrix} 1 & * \\ 0 & * \end{bmatrix}$.
 $T(\begin{bmatrix} -1 \\ 1 \end{bmatrix}) = \begin{bmatrix} 1 \\ -1 \end{bmatrix} = 0 \begin{bmatrix} 1 \\ 1 \end{bmatrix} - \begin{bmatrix} -1 \\ 1 \end{bmatrix}$. Hence, $B = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.

Example 8. Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be the linear map such that

$$
T\left(\left[\begin{array}{c}1\\0\end{array}\right]\right) = \left[\begin{array}{c}1\\2\\3\end{array}\right], \quad T\left(\left[\begin{array}{c}0\\1\end{array}\right]\right) = \left[\begin{array}{c}4\\0\\7\end{array}\right].
$$

What is the matrix B representing T with respect to the following bases?

$$
\begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 2 \end{bmatrix} \text{ for } \mathbb{R}^2, \qquad \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \text{ for } \mathbb{R}^3.
$$

$$
\overline{x_1} \qquad \overline{x_2}
$$

Solution. This time:

$$
T(\mathbf{x}_1) = T\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = T\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + T\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}
$$

\n
$$
= \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + \begin{bmatrix} 4 \\ 0 \\ 7 \end{bmatrix} = \begin{bmatrix} 5 \\ 2 \\ 10 \end{bmatrix}
$$

\n
$$
= 5\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - 3\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + 5\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}
$$

\n
$$
\Rightarrow B = \begin{bmatrix} 5 & * \\ -3 & * \\ 5 & * \end{bmatrix}
$$

\n
$$
T(\mathbf{x}_2) = T\begin{pmatrix} -1 \\ 2 \\ 2 \end{pmatrix} = -T\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + 2T\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}
$$

\n
$$
= -\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + 2\begin{bmatrix} 4 \\ 0 \\ 7 \end{bmatrix} = \begin{bmatrix} 7 \\ -2 \\ 11 \end{bmatrix}
$$

\n
$$
= 7\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - 9\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + 4\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}
$$

\n
$$
\Rightarrow B = \begin{bmatrix} 5 & 7 \\ -3 & -9 \\ 5 & 4 \end{bmatrix}
$$

Tedious, even in this simple example! (But we can certainly do it.)

A matrix representing T encodes in column j the coefficients of $T(x_j)$ expressed as a linear combination of $\boldsymbol{y}_1,...,\boldsymbol{y}_m.$

Example 9. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the map which rotates a vector counter-clockwise by angle θ .

- Which matrix A represents T with respect to the standard bases?
- Verify that $T(x) = Ax$.

Solution. Only keep reading if you need a hint!

```
The first basis vector \begin{bmatrix} 1 \\ 0 \end{bmatrix}\overline{0}gets send to \int \frac{\cos \theta}{\sin \theta}\sin\theta
.
Hence, the first column of A is \ldots
```