Review

- A linear map $T: V \to W$ satisfies $T(c\mathbf{x} + d\mathbf{y}) = cT(\mathbf{x}) + dT(\mathbf{y})$.
- $T: \mathbb{R}^n \to \mathbb{R}^m$ defined by $T(\boldsymbol{x}) = A\boldsymbol{x}$ is linear.

 $(A \text{ an } m \times n \text{ matrix})$

 $\boldsymbol{e}_1 = \left| egin{array}{c} 1 \\ 0 \\ \vdots \\ 0 \end{array} \right|$

- A is the matrix representing T w.r.t. the standard bases For instance: $T(e_1) = Ae_1 = 1^{st}$ column of A
- Let $\boldsymbol{x}_1, \dots, \boldsymbol{x}_n$ be a basis for V, and $\boldsymbol{y}_1, \dots, \boldsymbol{y}_m$ a basis for W.
 - The matrix representing T w.r.t. these bases encodes in column j the coefficients of $T(x_j)$ expressed as a linear combination of $y_1, ..., y_m$.
 - For instance: let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be reflection through the *x*-*y*-plane, that is, $(x, y, z) \mapsto (x, y, -z)$.

The matrix representing T w.r.t. the basis $\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$, $\begin{bmatrix} 0\\1\\0\\1 \end{bmatrix}$, $\begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}$ is $\begin{bmatrix} 1 & 0 & 0\\0 & 1 & 0\\-2 & 0 & -1 \end{bmatrix}$. $T\left(\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}\right) = \begin{bmatrix} 1\\1\\-1\\1 \end{bmatrix} = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} + 0\begin{bmatrix} 0\\1\\0\\1 \end{bmatrix} - 2\begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}$ $T\left(\begin{bmatrix} 0\\1\\0\\1 \end{bmatrix}\right) = \begin{bmatrix} 0\\1\\0\\1 \end{bmatrix}$, $T\left(\begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}\right) = \begin{bmatrix} 0\\0\\-1 \end{bmatrix}$

Example 1. Let $T: \mathbb{P}_3 \to \mathbb{P}_2$ be the linear map given by

$$T(p(t)) = \frac{\mathrm{d}}{\mathrm{d}t} p(t).$$

What is the matrix A representing T with respect to the standard bases?

Solution. The bases are

1,
$$t, t^2, t^3$$
 for $\mathbb{P}_3,$ 1, t, t^2 for \mathbb{P}_2 .

The matrix A has 4 columns and 3 rows.

The first column encodes T(1) = 0 and hence is $\begin{bmatrix} 0\\0\\0 \end{bmatrix}$. For the second column, T(t) = 1 and hence it is $\begin{bmatrix} 1\\0\\0 \end{bmatrix}$. For the third column, $T(t^2) = 2t$ and hence it is $\begin{bmatrix} 0\\2\\0 \end{bmatrix}$. For the last column, $T(t^3) = 3t^2$ and hence it is $\begin{bmatrix} 0\\0\\3 \end{bmatrix}$.

In conclusion, the matrix representing T is

0	1	0	0	
0	0	2	0	
0	0	0	3	
	0 0 0	$\begin{array}{ccc} 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{array}$	$\begin{array}{cccc} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Note: By the way, what is the null space of A?

The null space has basis $\begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$. The corresponding polynomial is p(t) = 1. No surprise here: differentation kills precisely the constant polynomials. *Note*: Let us differentiate $7t^3 - t + 3$ using the matrix A.

- First: $7t^3 t + 3$ w.r.t. standard basis: $\begin{bmatrix} 3\\ -1\\ 0\\ 7\\ \end{bmatrix}$ $\begin{bmatrix} 0 & 1 & 0 & 0\\ 0 & 0 & 2 & 0\\ 0 & 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 3\\ -1\\ 0\\ 7\\ \end{bmatrix} = \begin{bmatrix} -1\\ 0\\ 21\\ \end{bmatrix}$ $\begin{bmatrix} -1\\ 0\\ 21\\ \end{bmatrix}$ in the standard basis is $-1 + 21t^2$.

Orthogonality

The inner product and distances

Definition 2. The inner product (or dot product) of v, w in \mathbb{R}^n :

-

$$\boldsymbol{v} \cdot \boldsymbol{w} = \boldsymbol{v}^T \boldsymbol{w} = v_1 w_1 + \ldots + v_n w_n.$$

Because we can think of this as a special case of the matrix product, it satisfies the basic rules like associativity and distributivity.

In addition: $\boldsymbol{v} \cdot \boldsymbol{w} = \boldsymbol{w} \cdot \boldsymbol{v}$.

Example 3. For instance,

$$\begin{bmatrix} 1\\2\\3 \end{bmatrix} \cdot \begin{bmatrix} 1\\-1\\-2 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1\\-1\\-2 \end{bmatrix} = 1 - 2 - 6 = -7.$$

Definition 4.

• The norm (or length) of a vector \boldsymbol{v} in \mathbb{R}^n is

$$\|\boldsymbol{v}\| = \sqrt{\boldsymbol{v} \cdot \boldsymbol{v}} = \sqrt{v_1^2 + \ldots + v_n^2}.$$

This is the distance to the origin.

• The **distance** between points \boldsymbol{v} and \boldsymbol{w} in \mathbb{R}^n is

$$\operatorname{dist}(\boldsymbol{v},\boldsymbol{w}) = \|\boldsymbol{v}-\boldsymbol{w}\|.$$

Example 5. For instance, in \mathbb{R}^2 ,

dist
$$\begin{pmatrix} x_1 \\ y_1 \end{pmatrix}, \begin{bmatrix} x_2 \\ y_2 \end{pmatrix} = \| \begin{bmatrix} x_1 - x_2 \\ y_1 - y_2 \end{bmatrix} \| = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}.$$

Armin Straub astraub@illinois.edu

Orthogonal vectors

Definition 6. \boldsymbol{v} and \boldsymbol{w} in \mathbb{R}^n are orthogonal if

 $\boldsymbol{v}\cdot\boldsymbol{w}=0.$

How is this related to our understanding of right angles?

Pythagoras:

$$v \text{ and } w \text{ are orthogonal}$$

 $\iff \|v\|^2 + \|w\|^2 = \|v - w\|^2$
 $\iff v \cdot v + w \cdot w = \underbrace{(v - w) \cdot (v - w)}_{v \cdot v - 2v \cdot w + w \cdot w}$
 $\iff v \cdot w = 0$

Example 7. Are the following vectors orthogonal?
$(a)\left[\begin{array}{c}1\\2\end{array}\right],\left[\begin{array}{c}-2\\1\end{array}\right]$
$\begin{bmatrix} 1\\2 \end{bmatrix} \cdot \begin{bmatrix} -2\\1 \end{bmatrix} = 1 \cdot (-2) + 2 \cdot 1 = 0$. So, yes, they are orthogonal
$(b)\left[\begin{array}{c}1\\2\\1\end{array}\right],\left[\begin{array}{c}-2\\1\\1\end{array}\right]$
$\begin{bmatrix} 1\\2\\1 \end{bmatrix} \cdot \begin{bmatrix} -2\\1\\1 \end{bmatrix} = 1 \cdot (-2) + 2 \cdot 1 + 1 \cdot 1 = 1.$ So not orthogonal.