Review

- $\boldsymbol{v} \cdot \boldsymbol{w} = \boldsymbol{v}^T \boldsymbol{w} = v_1 w_1 + \ldots + v_n w_n$, the inner product of \boldsymbol{v} , \boldsymbol{w} in \mathbb{R}^n
 - Length of \boldsymbol{v} : $\|\boldsymbol{v}\| = \sqrt{\boldsymbol{v} \cdot \boldsymbol{v}} = \sqrt{v_1^2 + \ldots + v_n^2}$
 - **Distance** between points \boldsymbol{v} and \boldsymbol{w} : $\|\boldsymbol{v} \boldsymbol{w}\|$
- \boldsymbol{v} and \boldsymbol{w} in \mathbb{R}^n are **orthogonal** if $\boldsymbol{v} \cdot \boldsymbol{w} = 0$.
 - This simple criterion is equivalent to Pythagoras theorem.

Example 1.	The vectors	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$		0	,		
		0	,	' L O L		1	

- are orthogonal to each other, and
- have length 1.

We are going to call such a basis orthonormal soon.

Theorem 2. Suppose that $v_1, ..., v_n$ are nonzero and (pairwise) orthogonal. Then $v_1, ..., v_n$ are independent.

Proof. Suppose that

 $c_1 \boldsymbol{v}_1 + \ldots + c_n \boldsymbol{v}_n = \boldsymbol{0}.$

Take the dot product of v_1 with both sides:

$$0 = \boldsymbol{v}_1 \cdot (c_1 \boldsymbol{v}_1 + \ldots + c_n \boldsymbol{v}_n)$$

= $c_1 \boldsymbol{v}_1 \cdot \boldsymbol{v}_1 + c_2 \boldsymbol{v}_1 \cdot \boldsymbol{v}_2 + \ldots + c_n \boldsymbol{v}_1 \cdot \boldsymbol{v}_n$
= $c_1 \boldsymbol{v}_1 \cdot \boldsymbol{v}_1 = c_1 \|\boldsymbol{v}_1\|^2$

But $\|\boldsymbol{v}_1\| \neq 0$ and hence $c_1 = 0$.

Likewise, we find $c_2 = 0, ..., c_n = 0$. Hence, the vectors are independent.

Example 3. Let us consider $A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \\ 3 & 6 \end{bmatrix}$.

Find Nul(A) and $Col(A^T)$. Observe!

Solution.

 $\begin{aligned} \operatorname{Nul}(A) &= \operatorname{span}\left\{ \begin{bmatrix} -2\\ 1 \end{bmatrix} \right\} \\ \operatorname{Col}(A^T) &= \operatorname{span}\left\{ \begin{bmatrix} 1\\ 2 \end{bmatrix} \right\} \end{aligned}$

The two basis vectors are orthogonal! $\begin{bmatrix} -2 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \end{bmatrix} = 0$

can you see it? if not, do it!

Armin Straub astraub@illinois.edu **Example 4.** Repeat for $A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 0 \\ 3 & 6 & 0 \end{bmatrix}$.

Solution.

$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 0 \\ 3 & 6 & 0 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & -2 \\ 0 & 0 & -3 \end{bmatrix} \overset{\mathsf{RREF}}{\longrightarrow} \begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
$$\operatorname{Nul}(A) = \operatorname{span}\left\{ \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} \right\}$$
$$\operatorname{Col}(A^T) = \operatorname{span}\left\{ \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\} \quad \text{The 2 vectors form a basis.}$$
Again, the vectors are orthogonal!
$$\begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} = 0, \quad \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = 0.$$

Note: Because $\begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}$ is orthogonal to both basis vectors, it is orthogonal to every vector in the row space.

Vectors in Nul(A) are orthogonal to vectors in $Col(A^T)$.

The fundamental theorem, second act

Definition 5. Let W be a subspace of \mathbb{R}^n , and v in \mathbb{R}^n .

• \boldsymbol{v} is orthogonal to W, if $\boldsymbol{v} \cdot \boldsymbol{w} = 0$ for all \boldsymbol{w} in W.

 $(\iff \boldsymbol{v} \text{ is orthogonal to each vector in a basis of } W)$

- Another subspace V is orthogonal to W, if every vector in V is orthogonal to W.
- The orthogonal complement of W is the space W[⊥] of all vectors that are orthogonal to W.

Exercise: show that the orthogonal complement is indeed a vector space.

Example 6. In the previous example, $A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 0 \\ 3 & 6 & 0 \end{bmatrix}$.

We found that

$$\operatorname{Nul}(A) = \operatorname{span}\left\{ \begin{bmatrix} -2\\1\\0 \end{bmatrix} \right\}, \quad \operatorname{Col}(A^T) = \operatorname{span}\left\{ \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$$

Armin Straub astraub@illinois.edu are orthogonal subspaces.

Indeed, Nul(A) and $Col(A^T)$ are orthogonal complements.

Why? Because $\begin{bmatrix} -2\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\2\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix}$ are orthogonal, hence independent, and hence a basis of all of \mathbb{R}^3 .

Remark 7. Recall that, for an $m \times n$ matrix A, Nul(A) lives in \mathbb{R}^n and Col(A) lives in \mathbb{R}^m . Hence, they cannot be related in a similar way.

In the previous example, they happen to be both subspaces of \mathbb{R}^3 :

$$\operatorname{Nul}(A) = \operatorname{span}\left\{ \begin{bmatrix} -2\\1\\0 \end{bmatrix} \right\}, \quad \operatorname{Col}(A) = \operatorname{span}\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix} \right\}$$

But these spaces are not orthogonal: $\begin{bmatrix} -2\\ 1\\ 0 \end{bmatrix} \cdot \begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix} \neq 0$

Theorem 8. (Fundamental Theorem of Linear Algebra, Part I)

Let A be an $m \times n$ matrix of rank r.

- dim $\operatorname{Col}(A) = r$ (subspace of \mathbb{R}^m)
- dim $\operatorname{Col}(A^T) = r$ (subspace of \mathbb{R}^n)
- dim Nul(A) = n r (subspace of \mathbb{R}^n)
- $\dim \operatorname{Nul}(A^T) = m r$ (subspace of \mathbb{R}^m)

Theorem 9. (Fundamental Theorem of Linear Algebra, Part II)

• $\operatorname{Nul}(A)$ is orthogonal to $\operatorname{Col}(A^T)$. (both subspaces of \mathbb{R}^n)

Note that $\dim \operatorname{Nul}(A) + \dim \operatorname{Col}(A^T) = n$.

Hence, the two spaces are orthogonal complements in \mathbb{R}^n .

• $\operatorname{Nul}(A^T)$ is orthogonal to $\operatorname{Col}(A)$.

Again, the two spaces are orthogonal complements.