Review

- \boldsymbol{v} and \boldsymbol{w} in \mathbb{R}^n are orthogonal if $\boldsymbol{v} \cdot \boldsymbol{w} = v_1 w_1 + \ldots + v_n w_n = 0$.
 - This simple criterion is equivalent to Pythagoras' theorem. 0
 - Nonzero orthogonal vectors are independent. 0
- Nul $\begin{pmatrix} \begin{vmatrix} 1 & 2 \\ 2 & 4 \\ 3 & 6 \end{pmatrix}$ = span $\left\{ \begin{bmatrix} 2 \\ -1 \end{bmatrix} \right\}$, Col $\left(\begin{bmatrix} 1 & 2 \\ 2 & 4 \\ 3 & 6 \end{bmatrix}^T \right)$ = span $\left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\}$
- Fundamental Theorem of Linear Algebra:
 - Nul(A) is orthogonal to $Col(A^T)$. 0

Moreover, $\underbrace{\dim \operatorname{Col}(A^T)}_{= r \text{ (rank of } A)} + \underbrace{\dim \operatorname{Nul}(A)}_{= n-r} = n$

Hence, they are orthogonal complements in \mathbb{R}^n .

• $Nul(A^T)$ and Col(A) are orthogonal complements.

Nul(A) is orthogonal to $Col(A^T)$.

Why? Suppose that \boldsymbol{x} is in Nul(A). That is, $A\boldsymbol{x} = \boldsymbol{0}$. But think about what Ax = 0 means (row-column rule). It means that the inner product of every row with \boldsymbol{x} is zero. But that implies that \boldsymbol{x} is orthogonal to the row space.

Example 1. Find all vectors orthogonal to $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$.

Solution. (FTLA, no thinking) In other words:

find the orthogonal complement of $\operatorname{Col}\left(\begin{bmatrix} 1 & 0\\ 1 & 1\\ 1 & 1 \end{bmatrix}\right)$. FTLA: this is $\operatorname{Nul}\left(\begin{bmatrix} 1 & 0\\ 1 & 1\\ 1 & 1 \end{bmatrix}^T\right) = \operatorname{Nul}\left(\begin{bmatrix} 1 & 1 & 1\\ 0 & 1 & 1 \end{bmatrix}\right),$ which has basis: $\begin{vmatrix} 0 \\ -1 \\ 1 \end{vmatrix}$. span $\left\{ \begin{bmatrix} 0\\ -1\\ 1 \end{bmatrix} \right\}$ are the vectors orthogonal to $\begin{bmatrix} 1\\ 1\\ 1\\ 1 \end{bmatrix}$ and $\begin{bmatrix} 0\\ 1\\ 1\\ 1 \end{bmatrix}$.

Armin Straub astraub@illinois.edu $(A \text{ an } m \times n \text{ matrix})$

(both subspaces of \mathbb{R}^n)

(in \mathbb{R}^m)

Solution. (a little thinking) The FTLA is not magic!

$$\begin{bmatrix} 1\\1\\1 \end{bmatrix} \cdot \boldsymbol{x} = 0 \text{ and } \begin{bmatrix} 0\\1\\1 \end{bmatrix} \cdot \boldsymbol{x} = 0 \iff \begin{bmatrix} 1 & 1 & 1\\0 & 1 & 1 \end{bmatrix} \boldsymbol{x} = \begin{bmatrix} 0\\0 \end{bmatrix}$$
$$\iff \boldsymbol{x} \text{ in Nul} \left(\begin{bmatrix} 1 & 1 & 1\\0 & 1 & 1 \end{bmatrix} \right)$$

This is the same null space we obtained from the FTLA.

Example 2. Let
$$V = \left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} : a+b=2c \right\}.$$

Find a basis for the orthogonal complement of V.

Solution. (FTLA, no thinking) We note that $V = \text{Nul}([1 \ 1 \ -2])$. FTLA: the orthogonal complement is $\text{Col}([1 \ 1 \ -2]^T)$.

Basis for the orthogonal complement: $\begin{bmatrix} 1\\ 1\\ -2 \end{bmatrix}$

Solution. (a little thinking) $a + b = 2c \iff \begin{bmatrix} a \\ b \\ c \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix} = 0.$ So: *V* is actually defined as the orthogonal complement of span $\left\{ \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix} \right\}.$

A new perspective on Ax = b

$A \boldsymbol{x} = \boldsymbol{b}$ is solvable	
$\iff \boldsymbol{b} \text{ is in } \operatorname{Col}(A)$	("direct" approach)
$\iff oldsymbol{b}$ is orthogonal to $\mathrm{Nul}(A^T)$	("indirect" approach)

The indirect approach means: if $y^T A = 0$ then $y^T b = 0$.

Example 3. Let $A = \begin{bmatrix} 1 & 2 \\ 3 & 1 \\ 0 & 5 \end{bmatrix}$. For which **b** does Ax = b have a solution?

Solution. (old)

$$\begin{bmatrix} 1 & 2 & b_1 \\ 3 & 1 & b_2 \\ 0 & 5 & b_3 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 2 & b_1 \\ 0 & -5 & -3b_1 + b_2 \\ 0 & 5 & b_3 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 2 & b_1 \\ 0 & -5 & -3b_1 + b_2 \\ 0 & 0 & -3b_1 + b_2 + b_3 \end{bmatrix}$$

So, $A \boldsymbol{x} = \boldsymbol{b}$ is consistent $\iff -3b_1 + b_2 + b_3 = 0$.

Solution. (new) Ax = b solvable $\iff b$ orthogonal to $Nul(A^T)$

to find Nul(
$$A^T$$
): $\begin{bmatrix} 1 & 3 & 0 \\ 2 & 1 & 5 \end{bmatrix} \overset{\mathsf{RREF}}{\sim} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & -1 \end{bmatrix}$

We conclude that $\operatorname{Nul}(A^T)$ has basis $\begin{bmatrix} -3\\1\\1 \end{bmatrix}$. $A\boldsymbol{x} = \boldsymbol{b}$ is solvable $\iff \boldsymbol{b} \cdot \begin{bmatrix} -3\\1\\1 \end{bmatrix} = 0$. As above!

Motivation

Example 4. Not all linear systems have solutions.

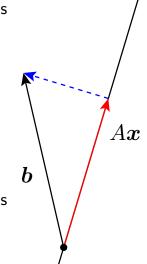
In fact, for many applications, data needs to be fitted and there is no hope for a perfect match.

For instance, $A\boldsymbol{x} = \boldsymbol{b}$ with

$$\left[\begin{array}{rrr}1&2\\2&4\end{array}\right]\boldsymbol{x}=\left[\begin{array}{rrr}-1\\2\end{array}\right]$$

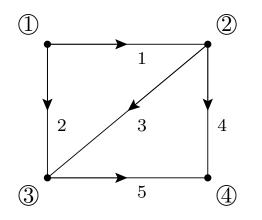
has no solution:

- $\begin{bmatrix} -1\\ 2 \end{bmatrix}$ is not in $\operatorname{Col}(A) = \operatorname{span}\left\{ \begin{bmatrix} 1\\ 2 \end{bmatrix} \right\}$
- Instead of giving up, we want the x which makes Ax and b as close as possible.



• Such x is characterized by Ax being **orthogonal** to the error b - Ax (see picture!)

Application: directed graphs



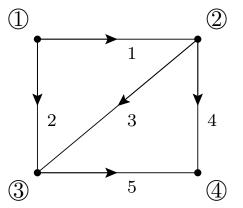
- Graphs appear in network analysis (e.g. internet) or circuit analysis.
- arrow indicates direction of flow
- no edges from a node to itself
- at most one edge between nodes

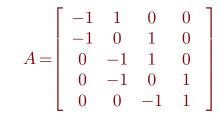
Definition 5. Let G be a graph with m edges and n nodes. The edge-node incidence matrix of G is the $m \times n$ matrix A with

$$A_{i,j} = \begin{cases} -1, & \text{if edge } i \text{ leaves node } j, \\ +1, & \text{if edge } i \text{ enters node } j, \\ 0, & \text{otherwise.} \end{cases}$$

Example 6. Give the edge-node incidence matrix of our graph.

Solution.





- each column represents a node
- each row represents an edge