Review

- v and w in \mathbb{R}^n are orthogonal if $v \cdot w = v_1w_1 + ... + v_nw_n = 0$.
	- This simple criterion is equivalent to Pythagoras' theorem.
	- Nonzero orthogonal vectors are independent.
- Nul $\sqrt{ }$ \mathcal{L} Έ \mathbf{I} 1 2 2 4 3 6 T \mathbf{I} $= \operatorname{span} \left\{ \begin{bmatrix} 2 \\ -1 \end{bmatrix} \right\}, \quad \operatorname{Col} \left($ \mathcal{L} Έ \mathbf{I} 1 2 2 4 3 6 ľ \mathbf{I} $\begin{pmatrix} T \\ 2 \end{pmatrix} = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\}$ 11
- *Fundamental Theorem of Linear Algebra*: $(A \text{ an } m \times n \text{ matrix})$
	- \circ Nul(A) is orthogonal to $Col(A^T)$.

Moreover, $\underbrace{\dim \mathrm{Col}(A^T)}$ $=r$ (rank of \overline{A}) $+\dim \mathrm{Nul}(A)$ $= \widetilde{n-r}$ $=$ n

Hence, they are **orthogonal complements** in \mathbb{R}^n .

 \circ $\mathrm{Nul}(A^T)$ and $\mathrm{Col}(A)$ are orthogonal complements. $\hspace{1cm}$ (in \mathbb{R}^m)

 $\mathrm{Nul}(A)$ is orthogonal to $\mathrm{Col}(A^T).$

Why? Suppose that x is in $\text{Nul}(A)$. That is, $Ax = 0$. But think about what $Ax = 0$ means (row-column rule). It means that the inner product of every row with x is zero. But that implies that x is orthogonal to the row space.

Example 1. Find all vectors orthogonal to $\sqrt{ }$ $\overline{1}$ 1 1 1 1 | and Г \mathbf{I} $\overline{0}$ 1 1 1 .

Solution. (FTLA, no thinking) In other words:

find the orthogonal complement of ${\rm Col}\Big(\Big[$ 1 0 1 1 1 1 1 \mathbf{I} \setminus . FTLA: this is $\text{Nul} \Big(\Big\lceil$ 1 0 1 1 1 1 ľ \mathbf{I} T = Nul($\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$), which has basis: $\sqrt{ }$ $\overline{1}$ $\overline{0}$ −1 1 1 . $\text{span}\left\{\left[\right.$ $\overline{0}$ −1 1 1 \mathbf{I}) are the vectors orthogonal to $\sqrt{ }$ $\overline{1}$ 1 1 1 1 and $\sqrt{ }$ $\overline{1}$ $\overline{0}$ 1 1 1 .

Armin Straub astraub@illinois.edu (both subspaces of \mathbb{R}^n)

Solution. (a little thinking) The FTLA is not magic!

$$
\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \cdot \mathbf{x} = 0 \text{ and } \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \cdot \mathbf{x} = 0 \iff \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \mathbf{x} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
$$

$$
\iff \mathbf{x} \text{ in } \text{Nul} \left(\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \right)
$$

This is the same null space we obtained from the FTLA.

Example 2. Let
$$
V = \left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} : a+b = 2c \right\}.
$$

Find a basis for the orthogonal complement of V .

Solution. (FTLA, no thinking) We note that $V = \text{Nul}([1 \ 1 \ -2]).$ FTLA: the orthogonal complement is $Col([1 \ 1 \ -2]^T)$. 1

Basis for the orthogonal complement: Г $\overline{1}$ 1 1 −2

Solution. (a little thinking) $a+b=2c \Longleftrightarrow$ Г $\overline{1}$ a b c $\Big| . \Big|$ \mathbf{I} 1 1 −2 1 $\vert = 0.$ So: V is actually defined as the orthogonal complement of ${\rm span}\biggl\{\biggl\lceil \frac{}{}% \bigl(\frac{1}{2},\frac{1}{2},\frac{1}{2}\bigr)\biggr\rceil$ 1 1 -2 1 \mathbf{I})

A new perspective on $Ax = b$

 \mathbf{I}

The indirect approach means: if $\bm{y}^T\!A\!=\!\bm{0}$ then $\bm{y}^T\!\bm{b}\!=\!0.$

.

Example 3. Let $A =$ $\sqrt{ }$ $\overline{1}$ 1 2 3 1 0 5 $\bigg].$ For which \bm{b} does $Ax\!=\!\bm{b}$ have a solution?

Solution. (old)

$$
\begin{bmatrix} 1 & 2 & b_1 \ 3 & 1 & b_2 \ 0 & 5 & b_3 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 2 & b_1 \ 0 & -5 & -3b_1 + b_2 \ 0 & 5 & b_3 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 2 & b_1 \ 0 & -5 & -3b_1 + b_2 \ 0 & 0 & -3b_1 + b_2 + b_3 \end{bmatrix}
$$

So, $Ax = b$ is consistent $\iff -3b_1 + b_2 + b_3 = 0$.

Solution. (new) $Ax = b$ solvable \Longleftrightarrow b orthogonal to $\text{Nul}(A^T)$

$$
\text{to find } \text{Nul}(A^T): \quad \left[\begin{array}{ccc} 1 & 3 & 0 \\ 2 & 1 & 5 \end{array}\right] \overset{\text{RREF}}{\rightsquigarrow} \left[\begin{array}{ccc} 1 & 0 & 3 \\ 0 & 1 & -1 \end{array}\right]
$$

We conclude that $\mathrm{Nul}(A^T)$ has basis $\sqrt{ }$ $\overline{1}$ −3 1 1 T . $Ax\!=\!\boldsymbol{b}$ is solvable $\Longleftrightarrow \boldsymbol{b} \!\cdot \! \left\lceil \right.$ \mathbf{I} −3 1 1 1 $\vert = 0$. As above!

Motivation

Example 4. Not all linear systems have solutions.

In fact, for many applications, data needs to be fitted and there is no hope for a perfect match.

For instance, $Ax = b$ with

$$
\left[\begin{array}{cc} 1 & 2 \\ 2 & 4 \end{array}\right] \hspace{-1.5pt} \boldsymbol{x} \hspace{-1.5pt} = \hspace{-1.5pt} \left[\begin{array}{c} -1 \\ 2 \end{array}\right]
$$

has no solution:

- $\lceil -1 \rceil$ $\overline{2}$ is not in $\text{Col}(A) = \text{span}\left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\}$ $\left\{\begin{matrix}1\\2\end{matrix}\right\}$
- Instead of giving up, we want the x which makes Ax and b as close as possible.

 $A\boldsymbol{x}$

b

Application: directed graphs

- Graphs appear in network analysis (e.g. internet) or circuit analysis.
- arrow indicates direction of flow
- no edges from a node to itself
- at most one edge between nodes

Definition 5. Let G be a graph with m edges and n nodes. The **edge-node incidence matrix** of G is the $m \times n$ matrix A with

$$
A_{i,j} = \begin{cases} -1, & \text{if edge } i \text{ leaves node } j, \\ +1, & \text{if edge } i \text{ enters node } j, \\ 0, & \text{otherwise.} \end{cases}
$$

Example 6. Give the edge-node incidence matrix of our graph.

Solution.

$$
A = \left[\begin{array}{rrrrr} -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & -1 & 1 \end{array} \right]
$$

- each column represents a node
- each row represents an edge