Review for Midterm 2

- As of yet unconfirmed:
 - final exam on Friday, December 12, 7-10pm
 - o conflict exam on Monday, December 15, 7–10pm

Directed graphs

- Go from directed graph to edge-node incidence matrix A and vice versa.
- Basis for Nul(A) from connected subgraphs.

For each connected subgraph, get a basis vector \boldsymbol{x} that assigns 1 to all nodes in that subgraph, and 0 to all other nodes.

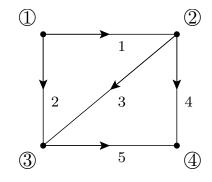
• Basis for $Nul(A^T)$ from (independent) loops.

For each (independent) loop, get a basis vector y that assigns 1 and -1 (depending on direction) to the edges in that loop, and 0 to all other edges.

Example 1.

Basis for Nul(A):
$$\begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix}$$

Basis for Nul(A^T): $\begin{bmatrix} 1\\-1\\1\\0\\0 \end{bmatrix}$, $\begin{bmatrix} 0\\0\\-1\\1\\-1\\1\\-1 \end{bmatrix}$



Fundamental notions

• Vectors $v_1, ..., v_n$ are **independent** if the only linear relation

$$c_1 \boldsymbol{v}_1 + \ldots + c_n \boldsymbol{v}_n = \boldsymbol{0}$$

is the one with $c_1 = c_2 = \ldots = c_n = 0$.

How to check for independence?

The columns of a matrix A are independent $\iff Nul(A) = \{0\}$.

- Vectors $v_1, ..., v_n$ in V are a **basis** for V if
 - they span V, that is $V = \operatorname{span}\{v_1, \dots, v_n\}$, and
 - they are independent.

In that case, V has dimension n.

• Vectors $\boldsymbol{v}, \boldsymbol{w}$ in \mathbb{R}^m are orthogonal if $\boldsymbol{v} \cdot \boldsymbol{w} = v_1 w_1 + \ldots + v_m w_m = 0$.

Subspaces

- From an echelon form of A, we get bases for:
 - $\operatorname{Nul}(A)$ by solving Ax = 0
 - $\operatorname{Col}(A)$ by taking the pivot columns of A
 - $\operatorname{Col}(A^T)$ by taking the nonzero rows of the echelon form

Example 2.

$$A = \begin{bmatrix} 1 & 2 & 0 & 4 \\ 2 & 4 & -1 & 3 \\ 3 & 6 & 2 & 22 \\ 4 & 8 & 0 & 16 \end{bmatrix} \stackrel{\mathsf{RREF}}{\sim} \begin{bmatrix} 1 & 2 & 0 & 4 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Basis for $\operatorname{Col}(A): \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ 2 \\ 0 \\ 4 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ 2 \\ 0 \\ 1 \\ 5 \end{bmatrix}$
Basis for $\operatorname{Col}(A^T): \begin{bmatrix} 1 \\ 2 \\ 0 \\ 4 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 5 \\ 1 \end{bmatrix}$
Basis for $\operatorname{Nul}(A): \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \\ 1 \\ 5 \end{bmatrix}, \begin{bmatrix} -4 \\ 0 \\ -5 \\ 1 \end{bmatrix}$

Dimension of $Nul(A^T)$: 2

- The solutions to $A\mathbf{x} = \mathbf{b}$ are given by $\mathbf{x}_p + \operatorname{Nul}(A)$.
- The fundamental theorem states that
 - $\operatorname{Nul}(A)$ and $\operatorname{Col}(A^T)$ are orthogonal complements So: $\dim \operatorname{Nul}(A) + \dim \operatorname{Col}(A^T) = n$ (number of columns of A)
 - $\operatorname{Nul}(A^T)$ and $\operatorname{Col}(A)$ are orthogonal complements So: $\dim \operatorname{Nul}(A^T) + \dim \operatorname{Col}(A) = m$ (number of rows of A)
 - In particular, if $r = \operatorname{rank}(A)$ (nr of pivots):
 - $-\dim\operatorname{Col}(A) = r$
 - $\dim \operatorname{Col}(A^T) = r$
 - $\dim \operatorname{Nul}(A) = n r$
 - $\dim \operatorname{Nul}(A^T) = m r$

Example 3. Consider the following subspaces of \mathbb{R}^4 :

(a)
$$V = \left\{ \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} : a+2b=0, a+b+d=0 \right\}$$

Armin Straub astraub@illinois.edu

(b)
$$V = \left\{ \begin{bmatrix} a+b-c \\ b \\ 2a+3c \\ c \end{bmatrix} : a,b,c \text{ in } \mathbb{R} \right\}$$

In each case, give a basis for V and its orthogonal complement.

Try to immediately get an idea what the dimensions are going to be!

Solution.

• First step: express these subspaces as one of the four subspaces of a matrix.

(a)
$$V = \operatorname{Nul}\left(\begin{bmatrix} 1 & 2 & 0 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix}\right)$$

(b) $V = \operatorname{Col}\left(\begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & 0 \\ 2 & 0 & 3 \\ 0 & 0 & 1 \end{bmatrix}\right)$

• Give a basis for each.

(a) row reductions:
$$\begin{bmatrix} 1 & 2 & 0 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & -1 \end{bmatrix}$$

basis for $V: \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \\ 0 \\ 1 \end{bmatrix}$
(b) row reductions: $\begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & 0 \\ 2 & 0 & 3 \\ 0 & 0 & 1 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & 0 \\ 0 & -2 & 5 \\ 0 & 0 & 1 \end{bmatrix}$

(no need to continue; we already see that the columns are independent)

basis for $V: \begin{bmatrix} 1\\0\\2\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} -1\\0\\3\\1 \end{bmatrix}$

• Use the fundamental theorem to find bases for the orthogonal complements.

(a) $V^{\perp} = \operatorname{Col}\left(\left[\begin{array}{rrrr} 1 & 2 & 0 & 0 \\ 1 & 1 & 0 & 1 \end{array}\right]^T\right)$

note the two rows are clearly independent.

basis for
$$V^{\perp}$$
: $\begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \end{bmatrix}^{T}$, $\begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}^{T}$
(b) $V^{\perp} = \operatorname{Nul} \left(\begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & 0 \\ 2 & 0 & 3 \\ 0 & 0 & 1 \end{bmatrix}^{T} \right) = \operatorname{Nul} \left(\begin{bmatrix} 1 & 0 & 2 & 0 \\ 1 & 1 & 0 & 0 \\ -1 & 0 & 3 & 1 \end{bmatrix}^{T} \right)$
row reductions: $\begin{bmatrix} 1 & 0 & 2 & 0 \\ 1 & 1 & 0 & 0 \\ -1 & 0 & 3 & 1 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 5 & 1 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 0 & 0 & -2/5 \\ 0 & 1 & 0 & 2/5 \\ 0 & 0 & 1 & 1/5 \end{bmatrix}$
basis for V^{\perp} : $\begin{bmatrix} 2/5 \\ -2/5 \\ -1/5 \\ 1 \end{bmatrix}$

Armin Straub astraub@illinois.edu **Example 4.** What does it mean for Ax = b if $Nul(A) = \{0\}$?

Solution. It means that if there is a solution, then it is unique.

That's because all solutions to $A\boldsymbol{x} = \boldsymbol{b}$ are given by $\boldsymbol{x}_p + \operatorname{Nul}(A)$.

Linear transformations

Example 5. Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be the linear map represented by the matrix

$$\left[\begin{array}{rrr}1&0\\2&1\\3&0\end{array}\right]$$

with respect to the bases $\begin{bmatrix} 0\\1 \end{bmatrix}$, $\begin{bmatrix} 1\\-1 \end{bmatrix}$ of \mathbb{R}^2 and $\begin{bmatrix} 1\\1\\0 \end{bmatrix}$, $\begin{bmatrix} 1\\0\\1 \end{bmatrix}$, $\begin{bmatrix} 0\\1\\1 \end{bmatrix}$ of \mathbb{R}^3 . (a) What is $T\left(\begin{bmatrix} 1\\1 \end{bmatrix}\right)$?

(b) Which matrix represents T with respect to the standard bases?

Solution.

The matrix tells us that:

$$T\left(\left[\begin{array}{c}0\\1\end{array}\right]\right) = 1\left[\begin{array}{c}1\\1\\0\end{array}\right] + 2\left[\begin{array}{c}1\\0\\1\end{array}\right] + 3\left[\begin{array}{c}0\\1\\1\end{array}\right] = \left[\begin{array}{c}3\\4\\5\end{array}\right]$$
$$T\left(\left[\begin{array}{c}1\\-1\\1\end{array}\right]\right) = 0\left[\begin{array}{c}1\\1\\0\end{array}\right] + 1\left[\begin{array}{c}1\\0\\1\end{array}\right] + 0\left[\begin{array}{c}0\\1\\1\end{array}\right] = \left[\begin{array}{c}1\\0\\1\end{array}\right] = \left[\begin{array}{c}1\\0\\1\end{array}\right]$$
(a) Note that $\left[\begin{array}{c}1\\1\\1\end{array}\right] = 2 \cdot \left[\begin{array}{c}0\\1\end{array}\right] + \left[\begin{array}{c}1\\-1\end{array}\right]$.
Hence, $T\left(\left[\begin{array}{c}1\\1\end{array}\right]\right) = 2T\left(\left[\begin{array}{c}0\\1\end{array}\right]\right) + T\left(\left[\begin{array}{c}1\\-1\end{array}\right]\right) = 2\left[\begin{array}{c}3\\4\\5\end{array}\right] + \left[\begin{array}{c}1\\0\\1\end{array}\right] = \left[\begin{array}{c}7\\8\\11\end{array}\right]$.
(b) Note that $\left[\begin{array}{c}1\\0\end{array}\right] = \left[\begin{array}{c}0\\1\end{array}\right] + \left[\begin{array}{c}1\\-1\end{array}\right]$.
Hence, $T\left(\left[\begin{array}{c}1\\0\end{array}\right]\right) = T\left(\left[\begin{array}{c}0\\1\end{array}\right]\right) + T\left(\left[\begin{array}{c}1\\-1\end{array}\right]\right) = \left[\begin{array}{c}3\\4\\5\end{array}\right] + \left[\begin{array}{c}1\\0\\1\end{array}\right] = \left[\begin{array}{c}4\\4\\6\end{array}\right]$.
We already know that $T\left(\left[\begin{array}{c}0\\1\end{array}\right]\right) = \left[\begin{array}{c}3\\4\\5\end{array}\right]$.
So, T is represented by $\left[\begin{array}{c}4&3\\4&4\\6&5\end{array}\right]$ with respect to the standard bases.

Check your understanding

Think about why each of these statements is true!

• Ax = b has a solution x if and only if b is in Col(A).

That's because Ax are linear combinations of the columns of A.

- A and A^T have the same rank.
 Recall that the rank of A (number of pivots of A) equals dim Col(A).
 So this is another way of saying that dim Col(A) = dim Col(A^T).
- The columns of an $n \times n$ matrix are independent if and only if the rows are.

Let r be the rank of A, and let A be $m \times n$ for now.

The columns are independent $\iff r = n$ (so that $\dim \operatorname{Nul}(A) = 0$).

But also: the rows are independent $\iff r = m$.

In the case m = n, these two conditions are equivalent.

• $A\mathbf{x} = \mathbf{b}$ has a solution \mathbf{x} if and only if \mathbf{b} is orthogonal to $Nul(A^T)$.

This follows from " $A\boldsymbol{x} = \boldsymbol{b}$ has a solution \boldsymbol{x} if and only if \boldsymbol{b} is in $\operatorname{Col}(A)$ " together with the fundamental theorem, which says that $\operatorname{Col}(A)$ is the orthogonal complement of $\operatorname{Nul}(A^T)$.

• The rows of A are independent if and only if $Nul(A^T) = \{\mathbf{0}\}$.

Recall that elements of Nul(A) correspond to linear relations between the columns of A. Likewise, elements of $Nul(A^T)$ correspond to linear relations between the rows of A.