

"Wouldn't it be more efficient to just find who's complicating equations and ask them to stop?"

• We can deal with "complicated" linear systems, but what to do if there is no solutions and we want a "best" approximate solution?

This is important for many applications, including fitting data.

• Suppose $Ax = b$ has no solution. This means b is not in $Col(A)$.

Idea: find "best" approximate solution by replacing **b** with its projection onto $Col(A)$.

• Recall: if $\boldsymbol{v}_1,...,\boldsymbol{v}_n$ are (pairwise) orthogonal:

 $\bm{v}_1 \cdot (c_1 \bm{v}_1 + ... + c_n \bm{v}_n) = c_1 \bm{v}_1 \cdot \bm{v}_1$

Implies: the $\bm{v}_1,...,\bm{v}_n$ are independent (unless one is the zero vector)

Orthogonal bases

Definition 1. A basis $\boldsymbol{v}_1, ..., \boldsymbol{v}_n$ of a vector space V is an **orthogonal basis** if the vectors are (pairwise) orthogonal.

Example 2. The standard basis Г \mathbf{I} 1 0 0 1 \vert , Г $\overline{1}$ 0 1 0 1 \vert , Г \mathbf{I} 0 0 1 $\Big]$ is an orthogonal basis for $\mathbb{R}^3.$

Example 3. Are the vectors Г \mathbf{I} 1 $\begin{array}{c} -1 \ 0 \end{array}$ T \vert , $\sqrt{ }$ $\overline{1}$ 1 1 0 1 \vert , Г $\overline{1}$ 0 0 1 $\Big]$ an orthogonal basis for $\mathbb{R}^3?$

Solution.

$$
\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = 0
$$

$$
\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = 0
$$

$$
\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = 0
$$

So this is an orthogonal basis.

Note that we do not need to check that the three vectors are independent. That follows from their orthogonality.

Example 4. Suppose $\boldsymbol{v}_1,...,\boldsymbol{v}_n$ is an orthogonal basis of V , and that \boldsymbol{w} is in V . Find $c_1,...,c_n$ such that

$$
\mathbf{w}=c_1\mathbf{v}_1+\ldots+c_n\mathbf{v}_n.
$$

.

Solution. Take the dot product of v_1 with both sides:

$$
\begin{aligned} \boldsymbol{v}_1 \cdot \boldsymbol{w} &= \boldsymbol{v}_1 \cdot (c_1 \boldsymbol{v}_1 + \ldots + c_n \boldsymbol{v}_n) \\ &= c_1 \boldsymbol{v}_1 \cdot \boldsymbol{v}_1 + c_2 \boldsymbol{v}_1 \cdot \boldsymbol{v}_2 + \ldots + c_n \boldsymbol{v}_1 \cdot \boldsymbol{v}_n \\ &= c_1 \boldsymbol{v}_1 \cdot \boldsymbol{v}_1 \end{aligned}
$$

Hence, $c_1 = \frac{v_1 \cdot w}{w_1 \cdot w_2}$ $\boldsymbol{v}_1\cdot \boldsymbol{v}_1$. In general, $c_j = \frac{\bm{v}_j \cdot \bm{w}_j}{\bm{w}_j}$ $\boldsymbol{v}_j\cdot \boldsymbol{v}_j$

If
$$
v_1, ..., v_n
$$
 is an orthogonal basis of V , and w is in V , then
\n
$$
w = c_1v_1 + ... + c_nv_n \quad \text{with} \quad c_j = \frac{w \cdot v_j}{v_j \cdot v_j}.
$$

Example 5. Express $\sqrt{ }$ $\overline{}$ 3 7 4 1 \vert in terms of the basis Г $\overline{1}$ 1 $\begin{array}{c} -1 \ 0 \end{array}$ 1 \vert , Г $\overline{1}$ 1 1 0 T \vert , Г \mathbf{I} 0 0 1 1 .

Solution.

$$
\begin{bmatrix} 3 \ 7 \ 4 \end{bmatrix} = c_1 \begin{bmatrix} 1 \ -1 \ 0 \end{bmatrix} + c_2 \begin{bmatrix} 1 \ 1 \ 0 \end{bmatrix} + c_3 \begin{bmatrix} 0 \ 0 \ 1 \end{bmatrix}
$$

$$
= \frac{\begin{bmatrix} 3 \ 7 \ 4 \end{bmatrix} \cdot \begin{bmatrix} 1 \ -1 \ 0 \end{bmatrix}}{\begin{bmatrix} 1 \ -1 \ 0 \end{bmatrix} \cdot \begin{bmatrix} 1 \ -1 \ 0 \end{bmatrix}} \begin{bmatrix} 1 \ -1 \ 0 \end{bmatrix} + \frac{\begin{bmatrix} 3 \ 7 \ 4 \end{bmatrix} \cdot \begin{bmatrix} 1 \ 1 \ 0 \end{bmatrix}}{\begin{bmatrix} 1 \ 1 \ 0 \end{bmatrix} \cdot \begin{bmatrix} 1 \ 0 \ 0 \end{bmatrix} \cdot \begin{bmatrix} 0 \ 0 \ 1 \end{bmatrix}} \begin{bmatrix} 0 \ 0 \ 1 \end{bmatrix}
$$

$$
= \frac{-4}{2} \begin{bmatrix} 1 \ -1 \ 0 \end{bmatrix} + \frac{10}{2} \begin{bmatrix} 1 \ 1 \ 0 \end{bmatrix} + \frac{4}{1} \begin{bmatrix} 0 \ 0 \ 1 \end{bmatrix}
$$

Armin Straub astraub@illinois.edu

Definition 6. A basis $\boldsymbol{v}_1,...,\boldsymbol{v}_n$ of a vector space V is an **orthonormal basis** if the vectors are orthogonal and have length 1.

Example 7. The standard basis Г \mathbf{I} 1 0 0 1 \vert , Г $\overline{1}$ 0 1 0 1 \vert , Г \mathbf{I} 0 0 1 $\Big]$ is an orthonormal basis for $\mathbb{R}^3.$

If $\boldsymbol{v}_1,...,\boldsymbol{v}_n$ is an orthonormal basis of V , and \boldsymbol{w} is in V , then

 $\boldsymbol{w} = c_1 \boldsymbol{v}_1 + \ldots + c_n \boldsymbol{v}_n$ with $c_j = \boldsymbol{v}_j \cdot \boldsymbol{w}$.

Example 8. Express $\sqrt{ }$ $\overline{1}$ 3 7 4 1 \vert in terms of the basis Г $\overline{1}$ 1 0 0 1 \vert , Г \mathbf{I} 0 1 0 1 \vert , $\sqrt{ }$ $\overline{1}$ 0 0 1 1 .

Solution. That's trivial, of course:

$$
\begin{bmatrix} 3 \\ 7 \\ 4 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + 7 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + 4 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}
$$

But note that the coefficients are

$$
\begin{bmatrix} 3 \\ 7 \\ 4 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = 3, \quad \begin{bmatrix} 3 \\ 7 \\ 4 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = 7, \quad \begin{bmatrix} 3 \\ 7 \\ 4 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = 4.
$$

Example 9. Is the basis Г $\overline{1}$ 1 $\begin{array}{c} -1 \ 0 \end{array}$ 1 \vert , Г \mathbf{I} 1 1 0 1 \vert , Г $\overline{1}$ 0 0 1 1 orthonormal? If not, normalize the vectors to produce an orthonormal basis.

Solution.

$$
\begin{bmatrix} 1 \ -1 \ 0 \end{bmatrix}
$$
 has length $\sqrt{\begin{bmatrix} 1 \ -1 \ 0 \end{bmatrix} \cdot \begin{bmatrix} 1 \ -1 \ 0 \end{bmatrix}} = \sqrt{2} \implies$ normalized: $\frac{1}{\sqrt{2}} \begin{bmatrix} 1 \ -1 \ 0 \end{bmatrix}$
 $\begin{bmatrix} 1 \ 1 \ 0 \end{bmatrix}$ has length $\sqrt{\begin{bmatrix} 1 \ 1 \ 0 \end{bmatrix} \cdot \begin{bmatrix} 1 \ 1 \ 0 \end{bmatrix}} = \sqrt{2} \implies$ normalized: $\frac{1}{\sqrt{2}} \begin{bmatrix} 1 \ 1 \ 0 \end{bmatrix}$
 $\begin{bmatrix} 0 \ 0 \ 1 \end{bmatrix}$ has length $\sqrt{\begin{bmatrix} 0 \ 0 \ 1 \end{bmatrix} \cdot \begin{bmatrix} 0 \ 0 \ 1 \end{bmatrix}} = 1 \implies$ is already normalized: $\begin{bmatrix} 0 \ 0 \ 1 \end{bmatrix}$
The corresponding orthonormal basis is $\frac{1}{\sqrt{2}} \begin{bmatrix} 1 \ -1 \ 0 \end{bmatrix}, \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \ 1 \ 0 \end{bmatrix}, \begin{bmatrix} 0 \ 0 \end{bmatrix}$.

Armin Straub astraub@illinois.edu Example 10. Express Г $\overline{1}$ 3 7 4 $\Big]$ in terms of the basis $\frac{1}{\sqrt{2}}$ Г Τ 1 $\begin{array}{c} -1 \ 0 \end{array}$ 1 $\Big\vert, \frac{1}{\sqrt{2}}$ $\overline{\sqrt{2}}$ $\sqrt{ }$ Τ 1 1 0 1 \vert , Г $\overline{1}$ 0 0 1 1 .

Solution.

$$
\begin{bmatrix} 3 \\ 7 \\ 4 \end{bmatrix} \cdot \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} = \frac{-4}{\sqrt{2}}, \quad \begin{bmatrix} 3 \\ 7 \\ 4 \end{bmatrix} \cdot \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \frac{10}{\sqrt{2}}, \quad \begin{bmatrix} 3 \\ 7 \\ 4 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = 4.
$$

Hence, just as in Example [5:](#page-1-0)

$$
\begin{bmatrix} 3 \\ 7 \\ 4 \end{bmatrix} = \frac{-4}{\sqrt{2}} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} + \frac{10}{\sqrt{2}} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + 4 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}
$$

Orthogonal projections

Example 12. What is the orthogonal projection of $\boldsymbol{x} = \left[\begin{array}{c} -8 \\ 4 \end{array} \right]$ $\big\}$ onto $\boldsymbol{y}\!=\!\big\lceil \frac{3}{4}\big\rceil$ 1 ?

Solution.

$$
\hat{x} = \frac{x \cdot y}{y \cdot y} \quad y = \frac{-8 \cdot 3 + 4 \cdot 1}{3^2 + 1^2} \begin{bmatrix} 3 \\ 1 \end{bmatrix} = -2 \begin{bmatrix} 3 \\ 1 \end{bmatrix} = \begin{bmatrix} -6 \\ -2 \end{bmatrix}
$$
\nThe component of *x* orthogonal to *y* is\n
$$
x - \hat{x} = \begin{bmatrix} -8 \\ 4 \end{bmatrix} - \begin{bmatrix} -6 \\ -2 \end{bmatrix} = \begin{bmatrix} -2 \\ 6 \end{bmatrix}.
$$
\n(Note that, indeed $\begin{bmatrix} -2 \\ 6 \end{bmatrix}$ and $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$ are orthogonal.)

Armin Straub astraub@illinois.edu

Example 13. What are the orthogonal projections of Г \mathbf{I} 2 1 1 1 **Example 13.** What are the orthogonal projections of $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ onto each of the vectors $\overline{1}$ 1 $\begin{array}{c} -1 \ 0 \end{array}$ 1 \vert , Г $\overline{1}$ 1 1 0 1 \vert , Г $\overline{1}$ 0 0 1 T \mid ²

Solution.

$$
\begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} \text{ on } \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}: \frac{2 \cdot 1 + 1 \cdot (-1) + 1 \cdot 0}{1^2 + (-1)^2 + 0^2} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}
$$

$$
\begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} \text{ on } \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}: \frac{2 \cdot 1 + 1 \cdot 1 + 1 \cdot 0}{1^2 + 1^2 + 0^2} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \frac{3}{2} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}
$$

$$
\begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} \text{ on } \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}: \frac{2 \cdot 0 + 1 \cdot 0 + 1 \cdot 1}{0^2 + 0^2 + 1^2} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}
$$

$$
\text{Note that these sum up to } \frac{1}{2} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} + \frac{3}{2} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}!
$$

That's because the three vectors are an orthogonal basis for \mathbb{R}^3 .

Recall: If $\boldsymbol{v}_1,...,\boldsymbol{v}_n$ is an orthogonal basis of V , and \boldsymbol{w} is in V , then $w = c_1v_1 + ... + c_nv_n$ with $c_j = \frac{w \cdot v_j}{w - w_j}$ $\boldsymbol{v}_j\cdot \boldsymbol{v}_j$. $\leadsto \boldsymbol{w}$ decomposes as the sum of its projections onto each basis vector