Comments on midterm

Suppose V is a vector space, and you are asked to give a basis.

- CORRECT: V has basis $\begin{vmatrix} 1 \\ 1 \\ 0 \end{vmatrix}$, $\begin{vmatrix} 1 \\ 0 \\ 1 \end{vmatrix}$
- CORRECT: V has basis $\left\{ \begin{bmatrix} 1\\1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\}$
- OK: $V = \operatorname{span}\left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\}$

(but you really should point out that the two vectors are independent)

• INCORRECT:
$$V = \left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\}$$

• INCORRECT: basis = $\begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$

Review

Solution. Note that y_1, y_2, y_3 is an orthogonal basis of \mathbb{R}^3 .

Orthogonal projection on subspaces

Theorem 2. Let W be a subspace of \mathbb{R}^n . Then, each x in \mathbb{R}^n can be uniquely written as

- $\hat{\boldsymbol{x}}$ is the orthogonal projection of \boldsymbol{x} onto W. $\hat{\boldsymbol{x}}$ is the point in W closest to \boldsymbol{x} . For any other \boldsymbol{y} in W, $dist(\boldsymbol{x}, \hat{\boldsymbol{x}}) < dist(\boldsymbol{x}, \boldsymbol{y})$.
- If $\boldsymbol{v}_1,...,\boldsymbol{v}_m$ is an orthogonal basis of W, then

$$\hat{\boldsymbol{x}} = \left(\frac{\boldsymbol{x} \cdot \boldsymbol{v}_1}{\boldsymbol{v}_1 \cdot \boldsymbol{v}_1}\right) \boldsymbol{v}_1 + \ldots + \left(\frac{\boldsymbol{x} \cdot \boldsymbol{v}_m}{\boldsymbol{v}_m \cdot \boldsymbol{v}_m}\right) \boldsymbol{v}_m.$$

Once $\hat{\boldsymbol{x}}$ is determined, $\boldsymbol{x}^{\perp} = \boldsymbol{x} - \hat{\boldsymbol{x}}$.

(This is also the orthogonal projection of \boldsymbol{x} onto W^{\perp} .)

Example 3. Let
$$W = \operatorname{span}\left\{ \begin{bmatrix} 3\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\}$$
, and $\boldsymbol{x} = \begin{bmatrix} 0\\3\\10 \end{bmatrix}$.

• Find the orthogonal projection of \boldsymbol{x} onto W.

(or: find the vector in W which is closest to \boldsymbol{x})

• Write \boldsymbol{x} as a vector in W plus a vector orthogonal to W.

Solution.

Note that $\boldsymbol{w}_1 = \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}$ and $\boldsymbol{w}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ are an orthogonal basis for W.

[We will soon learn how to construct orthogonal bases ourselves.]

Hence, the orthogonal projection of \boldsymbol{x} onto W is:

$$\hat{\boldsymbol{x}} = \frac{\boldsymbol{x} \cdot \boldsymbol{w}_1}{\boldsymbol{w}_1 \cdot \boldsymbol{w}_1} \boldsymbol{w}_1 + \frac{\boldsymbol{x} \cdot \boldsymbol{w}_2}{\boldsymbol{w}_2 \cdot \boldsymbol{w}_2} \boldsymbol{w}_2 = \frac{\begin{bmatrix} 0 \\ 3 \\ 10 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}}{\begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}} \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix} + \frac{\begin{bmatrix} 0 \\ 3 \\ 10 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}}{\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$
$$= \frac{10}{10} \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix} + 3 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \\ 1 \end{bmatrix}$$

 \hat{x} is the vector in W which best approximates x.

Orthogonal projection of \boldsymbol{x} onto the orthogonal complement of W:

$$\boldsymbol{x}^{\perp} = \begin{bmatrix} 0\\3\\10 \end{bmatrix} - \begin{bmatrix} 3\\3\\1 \end{bmatrix} = \begin{bmatrix} -3\\0\\9 \end{bmatrix}. \text{ Hence, } \boldsymbol{x} = \begin{bmatrix} 0\\3\\10 \end{bmatrix} = \begin{bmatrix} 3\\3\\1 \end{bmatrix} + \begin{bmatrix} -3\\0\\9 \end{bmatrix}.$$

$$Note: \text{ Indeed, } \begin{bmatrix} -3\\0\\9 \end{bmatrix} \text{ is orthogonal to } \boldsymbol{w}_1 = \begin{bmatrix} 3\\0\\1 \end{bmatrix} \text{ and } \boldsymbol{w}_2 = \begin{bmatrix} 0\\1\\0 \end{bmatrix}.$$

Definition 4. Let $v_1, ..., v_m$ be an orthogonal basis of W, a subspace of \mathbb{R}^n . Note that the projection map $\pi_W: \mathbb{R}^n \to \mathbb{R}^n$, given by

$$oldsymbol{x}\mapsto \hat{oldsymbol{x}}=igg(rac{oldsymbol{x}\cdotoldsymbol{v}_1}{oldsymbol{v}_1\cdotoldsymbol{v}_1}igg)oldsymbol{v}_1+...+igg(rac{oldsymbol{x}\cdotoldsymbol{v}_m}{oldsymbol{v}_m\cdotoldsymbol{v}_m}igg)oldsymbol{v}_m$$

is linear. The matrix P representing π_W with respect to the standard basis is the corresponding **projection matrix**.

Example 5. Find the projection matrix P which corresponds to orthogonal projection onto $W = \operatorname{span}\left\{ \begin{bmatrix} 3\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\}$ in \mathbb{R}^3 .

Armin Straub astraub@illinois.edu

Example 6. (again)

Find the orthogonal projection of $\boldsymbol{x} = \begin{bmatrix} 0 \\ 3 \\ 10 \end{bmatrix}$ onto $W = \operatorname{span}\left\{ \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right\}$.

Solution. $\hat{x} = Px = \begin{bmatrix} \frac{9}{10} & 0 & \frac{3}{10} \\ 0 & 1 & 0 \\ \frac{3}{10} & 0 & \frac{1}{10} \end{bmatrix} \begin{bmatrix} 0 \\ 3 \\ 10 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \\ 1 \end{bmatrix}$, as in the previous example.

Example 7. Compute P^2 for the projection matrix we just found. Explain!

Solution.

$\left[\begin{array}{cc} \frac{9}{10} & 0 & \frac{3}{10} \end{array}\right]$	$\left[\begin{array}{cc} \frac{9}{10} & 0 & \frac{3}{10} \end{array}\right] \left[$	$\frac{9}{10}$	0	$\left \frac{3}{10}\right $
$0 \ 1 \ 0$	$0 \ 1 \ 0 = $	0	1	0
$\frac{3}{10} \ 0 \ \frac{1}{10}$	$\left[\begin{array}{ccc} \frac{3}{10} & 0 & \frac{1}{10} \end{array}\right]$	$\frac{3}{10}$	0	$\frac{1}{10}$

Projecting a second time does not change anything anymore.

Practice problems

Example 8. Find the closest point to \boldsymbol{x} in span $\{\boldsymbol{v}_1, \boldsymbol{v}_2\}$, where

$$\boldsymbol{x} = \begin{bmatrix} 2\\4\\0\\-2 \end{bmatrix}, \quad \boldsymbol{v}_1 = \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}, \quad \boldsymbol{v}_2 = \begin{bmatrix} 1\\0\\1\\1 \end{bmatrix}.$$

Solution. This is the orthogonal projection of x onto span $\{v_1, v_2\}$.

•••

...

Armin Straub astraub@illinois.edu