Comments on midterm

Suppose V is a vector space, and you are asked to give a basis.

- CORRECT: V has basis $\sqrt{ }$ $\overline{1}$ 1 1 $\overline{0}$ 1 \vert , Г $\overline{1}$ 1 $\overline{0}$ 1
- CORRECT: V has basis $\left\{\left\lceil \frac{1}{1 + \frac{1}{$ 1 1 $\overline{0}$ 1 \vert , $\sqrt{ }$ $\overline{1}$ 1 $\overline{0}$ 1 1 \mathbf{I})
- OK: $V = \text{span}\left\{\left[\right.$ 1 1 $\overline{0}$ 1 \vert , Г \mathbf{I} 1 $\overline{0}$ 1 1 \mathbf{I})

(but you really should point out that the two vectors are independent)

1 \mathbf{I}

• INCORRECT:
$$
V = \left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \right\}
$$

• INCORRECT: basis $=$ \mathbf{I} 1 1 1 0 0 1 1 \mathbf{I}

Review

 ${\sf Solution.}$ Note that $\bm y_1, \bm y_2, \bm y_3$ is an orthogonal basis of $\mathbb{R}^3.$

$$
\begin{bmatrix} 2 \ 1 \ 1 \end{bmatrix} = c_1 \begin{bmatrix} 1 \ -1 \ 0 \end{bmatrix} + c_2 \begin{bmatrix} 1 \ 1 \ 0 \end{bmatrix} + c_3 \begin{bmatrix} 0 \ 0 \ 1 \end{bmatrix}
$$

\n
$$
= \frac{\begin{bmatrix} 2 \ 1 \ 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \ -1 \ 0 \end{bmatrix}}{\begin{bmatrix} 1 \ -1 \ 0 \end{bmatrix} \cdot \begin{bmatrix} 1 \ -1 \ 0 \end{bmatrix} + \begin{bmatrix} 1 \ 1 \ 0 \end{bmatrix} + \begin{bmatrix} 1 \ 1 \ 0 \end{bmatrix} \begin{bmatrix} 1 \ 1 \ 0 \end{bmatrix} + \begin{bmatrix} 2 \ 1 \ 0 \end{bmatrix} \cdot \begin{bmatrix} 0 \ 0 \ 0 \end{bmatrix} \cdot \begin{bmatrix} 0 \ 0 \ 1 \end{bmatrix} \begin{bmatrix} 0 \ 1 \ 0 \end{bmatrix}
$$

\n
$$
= \frac{1}{2} \begin{bmatrix} 1 \ -1 \ 0 \end{bmatrix} + \frac{3}{2} \begin{bmatrix} 1 \ 1 \ 0 \end{bmatrix} + \begin{bmatrix} 0 \ 0 \ 0 \end{bmatrix} + \begin{bmatrix} 0 \ 0 \ 1 \end{bmatrix} \begin{bmatrix} 0 \ 0 \end{bmatrix} + \begin{bmatrix} 0 \ 0 \ 0 \end{bmatrix} \begin{bmatrix} 0 \ 0 \ 0 \end{bmatrix} \cdot \begin{bmatrix} 0 \ 0 \ 1 \end{bmatrix} + \frac{3}{2} \begin{bmatrix} 1 \ 1 \ 0 \end{bmatrix} + \begin{bmatrix} 0 \ 0 \ 1 \end{bmatrix} + \begin{bmatrix} 0 \ 0 \ 1 \end{bmatrix}
$$

Orthogonal projection on subspaces

Theorem 2. Let W be a subspace of \mathbb{R}^n . Then, each x in \mathbb{R}^n can be uniquely written as

- $\hat{\boldsymbol{x}}$ is the orthogonal projection of \boldsymbol{x} onto W . $\hat{\bm{x}}$ is the point in W closest to \bm{x} . For any other \bm{y} in W , $\text{dist}(\bm{x}, \hat{\bm{x}}) \leq \text{dist}(\bm{x}, \bm{y})$.
- If $v_1, ..., v_m$ is an orthogonal basis of W , then

$$
\hat{\boldsymbol{x}} = \left(\frac{\boldsymbol{x} \cdot \boldsymbol{v}_1}{\boldsymbol{v}_1 \cdot \boldsymbol{v}_1}\right) \boldsymbol{v}_1 + \ldots + \left(\frac{\boldsymbol{x} \cdot \boldsymbol{v}_m}{\boldsymbol{v}_m \cdot \boldsymbol{v}_m}\right) \boldsymbol{v}_m.
$$

Once \hat{x} is determined, $\boldsymbol{x}^{\perp} = \boldsymbol{x} - \hat{\boldsymbol{x}}$.

(This is also the orthogonal projection of x onto W^{\perp} .)

Example 3. Let
$$
W = \text{span}\left\{ \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right\}
$$
, and $\boldsymbol{x} = \begin{bmatrix} 0 \\ 3 \\ 10 \end{bmatrix}$.

• Find the orthogonal projection of x onto W .

(or: find the vector in W which is closest to x)

• Write x as a vector in W plus a vector orthogonal to W .

Solution.

Note that $\boldsymbol{w}_1 \!=\! \begin{bmatrix} \end{bmatrix}$ \mathbf{I} 3 $\overline{0}$ 1 $\Big\}$ and $\bm{w}_2\!=\!\Big\lceil\,$ \mathbf{I} $\overline{0}$ 1 $\overline{0}$ 1 are an orthogonal basis for W .

[We will soon learn how to construct orthogonal bases ourselves.]

Hence, the orthogonal projection of x onto W is:

$$
\hat{\mathbf{x}} = \frac{\mathbf{x} \cdot \mathbf{w}_1}{\mathbf{w}_1 \cdot \mathbf{w}_1} \mathbf{w}_1 + \frac{\mathbf{x} \cdot \mathbf{w}_2}{\mathbf{w}_2 \cdot \mathbf{w}_2} \mathbf{w}_2 = \begin{bmatrix} 0 \\ 3 \\ 10 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} 3 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 3 \\ 10 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}
$$

$$
= \frac{10}{10} \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix} + 3 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \\ 1 \end{bmatrix}
$$

 \hat{x} is the vector in W which best approximates x.

Orthogonal projection of x onto the orthogonal complement of W :

$$
\boldsymbol{x}^{\perp} = \begin{bmatrix} 0 \\ 3 \\ 10 \end{bmatrix} - \begin{bmatrix} 3 \\ 3 \\ 1 \end{bmatrix} = \begin{bmatrix} -3 \\ 0 \\ 9 \end{bmatrix}.
$$
 Hence,
$$
\boldsymbol{x} = \begin{bmatrix} 0 \\ 3 \\ 10 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \\ 1 \end{bmatrix} + \begin{bmatrix} -3 \\ 0 \\ 9 \end{bmatrix}.
$$

Note: Indeed,
$$
\begin{bmatrix} -3 \\ 0 \\ 9 \end{bmatrix}
$$
 is orthogonal to
$$
\boldsymbol{w}_1 = \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}
$$
 and
$$
\boldsymbol{w}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}.
$$

Definition 4. Let $\boldsymbol{v}_1,...,\boldsymbol{v}_m$ be an orthogonal basis of W , a subspace of \mathbb{R}^n . Note that the projection map $\pi_W: \mathbb{R}^n \to \mathbb{R}^n$, given by

$$
\boldsymbol{x}\mapsto \hat{\boldsymbol{x}}=\bigg(\frac{\boldsymbol{x}\cdot \boldsymbol{v}_1}{\boldsymbol{v}_1\cdot \boldsymbol{v}_1}\bigg)\!\boldsymbol{v}_1+\ldots+\bigg(\frac{\boldsymbol{x}\cdot \boldsymbol{v}_m}{\boldsymbol{v}_m\cdot \boldsymbol{v}_m}\bigg)\!\boldsymbol{v}_m
$$

is linear. The matrix P representing π_W with respect to the standard basis is the corresponding projection matrix.

Example 5. Find the projection matrix P which corresponds to orthogonal projection onto $W\!=\!\mathrm{span}\bigg\{\bigg[$ 3 $\overline{0}$ 1 1 \vert , $\sqrt{ }$ \mathbf{I} $\overline{0}$ 1 $\overline{0}$ 1 \mathbf{I}) in \mathbb{R}^3 .

 $\frac{3}{10}$ * *

1

 \mathbf{r} .

Solution. Standard basis : $\sqrt{ }$ $\overline{1}$ 1 $\overline{0}$ $\overline{0}$ 1 \vert , $\sqrt{ }$ \mathbf{I} $\overline{0}$ 1 $\overline{0}$ 1 \vert , Т \mathbf{I} $\overline{0}$ $\overline{0}$ 1 1 . The first column of P encodes the projection of Г \mathbf{I} 1 $\overline{0}$ $\overline{0}$ 1 : Г T $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ $\bigg].\bigg[$ \mathbf{I} 3 0 1 1 T Т 3 0 1 $\bigg].\bigg[$ 3 0 1 1 Г \mathbf{I} 3 $\overline{0}$ $\Big] +$ Г \mathbf{I} $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ $\big|\cdot\big|$ $\overline{1}$ $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ 1 T Т $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ $\vert \cdot \vert$ $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ T Г \mathbf{I} $\overline{0}$ 1 $= \frac{3}{10}$ 10 $\sqrt{ }$ $\overline{1}$ 3 $\overline{0}$ $\Big].$ Hence $P=$ Т \parallel $\frac{9}{10}$ * *
0 * *

Armin Straub astraub@illinois.edu

1

T

 $\overline{1}$

T

 $\overline{0}$

1

T

 \mathbf{I}

T

The second column of P encodes the projection of Г $\overline{1}$ $\overline{0}$ 1 $\overline{0}$ 1 : Г T 0 1 0 $\bigg].\bigg[$ \mathbf{I} 3 0 1 1 T Г T 3 0 1 $\bigg].\bigg[$ \mathbf{I} 3 0 1 1 T Г \mathbf{I} 3 $\overline{0}$ 1 $\Big]_+$ Г \mathbf{I} 0 1 0 $\big|\cdot\big|$ $\overline{1}$ $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ 1 T Г \mathbf{I} 0 1 0 $\big|\cdot\big|$ $\overline{1}$ $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ 1 T Г \mathbf{I} $\overline{0}$ 1 $\overline{0}$ $=$ $\overline{1}$ $\overline{0}$ 1 $\overline{0}$ $\Big].$ Hence P $=$ $\sqrt{ }$ \parallel $\frac{9}{10}$ 0 *
0 1 * $\frac{3}{10}$ 0 * 1 I . The third column of P encodes the projection of Г \mathbf{I} $\overline{0}$ $\overline{0}$ 1 1 $\left| \cdot \right|$ Т T $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ $\bigg].\bigg[$ \mathbf{I} 3 0 1 1 T Г T 3 0 1 $\bigg].\bigg[$ \mathbf{I} 3 0 1 1 T Г Τ 3 $\overline{0}$ 1 $\Big] +$ Т T $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ $\vert \cdot \vert$ $\overline{1}$ $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ T T Г \mathbf{I} 0 1 0 $\big|\cdot\big|$ $\overline{1}$ $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ 1 T Г T $\overline{0}$ 1 $\overline{0}$ $= \frac{1}{10}$ 10 $\sqrt{ }$ Τ 3 $\overline{0}$ 1 $\Big].$ Hence $P =$ Г \parallel $\frac{9}{10}$ 0 $\frac{3}{10}$ $\begin{array}{ccc} 1 & 0 & 0 \ 0 & 1 & 0 \end{array}$ $\frac{3}{10}$ 0 $\frac{1}{10}$ 1 0 l \mathbf{r} .

Example 6. (again)

Find the orthogonal projection of $x\!=\!\left\lceil \right\rceil$ $\overline{1}$ $\overline{0}$ 3 10 onto $W = \text{span}\left\{\left[\right.$ 3 $\overline{0}$ 1 l \vert , $\sqrt{ }$ $\overline{1}$ $\overline{0}$ 1 $\overline{0}$ 1 \mathbf{I}) .

Solution. $\hat{x} = Px =$ Г $\mathbf{\mathbf{I}}$ $\frac{9}{10}$ 0 $\frac{3}{10}$ $\begin{array}{ccc} 1 & 0 & 0 \ 0 & 1 & 0 \end{array}$ $\frac{3}{10}$ 0 $\frac{1}{10}$ 1 0 Ъ \parallel IГ II $\overline{0}$ 3 10 $=$ \mathbf{I} 3 3 1 1 \vert , as in the previous example.

Example 7. Compute P^2 for the projection matrix we just found. Explain!

Solution.

Projecting a second time does not change anything anymore.

Practice problems

Example 8. Find the closest point to x in span $\{v_1, v_2\}$, where

$$
\boldsymbol{x} = \begin{bmatrix} 2 \\ 4 \\ 0 \\ -2 \end{bmatrix}, \quad \boldsymbol{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \quad \boldsymbol{v}_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}.
$$

Solution. This is the orthogonal projection of x onto $\text{span}\{v_1, v_2\}$.

Armin Straub astraub@illinois.edu