Review

Let W be a subspace of \mathbb{R}^n , and x in \mathbb{R}^n (but maybe not in W).

Let \hat{x} be the **orthogonal projection** of x onto W.

(vector in W as close as possible to x)

• If $v_1, ..., v_m$ is an orthogonal basis of W , then

$$
\hat{\boldsymbol{x}} = \underbrace{\left(\frac{\boldsymbol{x} \cdot \boldsymbol{v}_1}{\boldsymbol{v}_1 \cdot \boldsymbol{v}_1}\right) \boldsymbol{v}_1}_{\text{proj. of \boldsymbol{x} onto \boldsymbol{v}_1}} + ... + \underbrace{\left(\frac{\boldsymbol{x} \cdot \boldsymbol{v}_m}{\boldsymbol{v}_m \cdot \boldsymbol{v}_m}\right) \boldsymbol{v}_m}_{\text{proj. of \boldsymbol{x} onto \boldsymbol{v}_m}}.
$$

• The decomposition $x = \hat{x}$ in W $+\big\langle x^{\perp}_{\text{}}\right\rangle$ ⊥ in W^{\perp} is unique.

Least squares

Definition 1. \hat{x} is a **least squares solution** of the system $Ax = b$ if \hat{x} is such that $A\hat{x} - b$ is as small as possible.

- If $Ax = b$ is consistent, then a least squares solution \hat{x} is just an ordinary solution. (in that case, $A\hat{\boldsymbol{x}} - \boldsymbol{b} = \boldsymbol{0}$) • Interesting case: $Ax = b$ is inconsistent. (in other words: the system is overdetermined) **Idea.** $Ax = b$ is consistent $\iff b$ is in Col(A) So, if $Ax = b$ is inconsistent, we • replace b with its projection \vec{b} onto $Col(A)$, Ax b
- and solve $A\hat{x} = \hat{b}$. (consistent by construction!)

Example 2. Find the least squares solution to $Ax = b$, where

$$
A = \begin{bmatrix} 1 & 1 \\ -1 & 1 \\ 0 & 0 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}.
$$

Solution. Note that the columns of A are orthogonal.

[Otherwise, we could not proceed in the same way.]

Hence, the projection $\hat{\bm{b}}$ of \bm{b} onto $\mathrm{Col}(A)$ is

$$
\hat{\boldsymbol{b}} = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 1 \\ 1 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} + \frac{3}{2} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}.
$$

We have already solved $A\hat{\bm{x}}=\hat{\bm{b}}$ in the process: $\hat{\bm{x}}=\left[\frac{1/2}{3/2}\right].$

The normal equations

The following result provides a straightforward recipe (thanks to the FTLA) to find least squares solutions for any matrix.

[The previous example was only simple because the columns of A were orthogonal.]

Theorem 3. \hat{x} is a least squares solution of $Ax = b$ $\iff A^T A \hat{x} = A^T b$ (the normal equations)

Proof.

 \hat{x} is a least squares solution of $Ax = b$ $\iff A\hat{\bm{x}} - \bm{b}$ is as small as possible $\iff A\hat{\mathbf{x}} - \mathbf{b}$ is orthogonal to $Col(A)$ FTLA $A \hat{\boldsymbol{x}} - \boldsymbol{b}$ is in $\mathrm{Nul}(A^T)$ $\iff A^T(A\hat{x} - \mathbf{b}) = 0$ $\iff A^T A \hat{x} = A^T b$

Example 4. (again) Find the least squares solution to $Ax = b$, where

$$
A = \begin{bmatrix} 1 & 1 \\ -1 & 1 \\ 0 & 0 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}.
$$

Solution.

$$
A^{T}A = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -1 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}
$$

$$
A^{T}b = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}
$$

The normal equations $A^T A \hat{x} = A^T b$ are

$$
\left[\begin{array}{cc} 2 & 0 \\ 0 & 2 \end{array}\right] \hat{\mathbf{x}} = \left[\begin{array}{c} 1 \\ 3 \end{array}\right].
$$

Solving, we find (again) $\hat{\bm{x}} = \left[\begin{smallmatrix} 1/2\ 3/2 \end{smallmatrix}\right]$.

Example 5. Find the least squares solution to $Ax = b$, where

What is the projection of **b** onto $Col(A)$?

Solution.

$$
A^{T}A = \begin{bmatrix} 4 & 0 & 1 \\ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 17 & 1 \\ 1 & 5 \end{bmatrix}
$$

$$
A^{T}b = \begin{bmatrix} 4 & 0 & 1 \\ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix} = \begin{bmatrix} 19 \\ 11 \end{bmatrix}
$$

The normal equations $A^T A \hat{x} = A^T b$ are

$$
\left[\begin{array}{cc} 17 & 1 \\ 1 & 5 \end{array}\right] \hat{\mathbf{x}} = \left[\begin{array}{c} 19 \\ 11 \end{array}\right].
$$

Solving, we find $\hat{x} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ 2 .

The projection of \boldsymbol{b} onto $\mathrm{Col}(A)$ is $A\hat{\boldsymbol{x}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ \mathbf{I} 4 0 0 2 1 1 ٦ Ш $\lceil 1 \rceil$ 2 $]=$ Г $\overline{1}$ 4 4 3 1 $\|\cdot$

Just to make sure: why is $A\hat{x}$ the projection of **b** onto $Col(A)$?

Because, for a least squares solution \hat{x} , $A\hat{x} - \hat{b}$ is as small as possible.

The projection $\hat{\bm{b}}$ of \bm{b} onto $\mathrm{Col}(A)$ is

 $\hat{\bm{b}} = A\hat{\bm{x}} \, , \quad \text{with $\hat{\bm{x}}$ such that } A^T A \hat{\bm{x}} = A^T \bm{b} .$

If A has full column rank, this is $(columns of A independent)$

$$
\hat{\mathbf{b}} = A(A^T A)^{-1} A^T \mathbf{b}.
$$

Hence, the projection matrix for projecting onto $Col(A)$ is

 $P = A(A^T A)^{-1} A^T.$

Application: least squares lines

Experimental data: (x_i, y_i)

Wanted: parameters β_1, β_2 such that $y_i \approx \beta_1 + \beta_2 x_i$ for all i

This approximation should be so that

 $SS_{res} = \sum$ i $[y_i - (\beta_1 + \beta_2 x_i)]^2$ residual sum of squares is as small as possible.

Example 6. Find β_1, β_2 such that the line $y = \beta_1 + \beta_2 x$ best fits the data points $(2, 1)$, $(5, 2), (7, 3), (8, 3).$

Solution. The equations $y_i = \beta_1 + \beta_2 x_i$ in matrix form:

$$
\begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ 1 & x_3 \\ 1 & x_4 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix}
$$
design matrix X
vector y

Armin Straub astraub@illinois.edu Here, we need to find a least-squares solution to

$$
X^{T}X = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 5 & 1 & 2 \\ 1 & 8 & 1 & 5 \\ 2 & 5 & 7 & 8 \end{bmatrix} \begin{bmatrix} \beta_{1} \\ \beta_{2} \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 3 \end{bmatrix}.
$$

$$
X^{T}X = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 5 & 7 & 8 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 5 \\ 1 & 7 \\ 1 & 8 \end{bmatrix} = \begin{bmatrix} 4 & 22 \\ 22 & 142 \end{bmatrix}
$$

$$
X^{T}y = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 5 & 7 & 8 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 3 \end{bmatrix} = \begin{bmatrix} 9 \\ 57 \end{bmatrix}
$$

Solving $\begin{bmatrix} 4 & 22 \ 22 & 142 \end{bmatrix}$ $\hat{\beta} = \begin{bmatrix} 9 \ 57 \end{bmatrix}$, we find $\begin{bmatrix} \beta_1 \ \beta_2 \end{bmatrix}$ β_2 $= \begin{bmatrix} 2/7 \\ 5/14 \end{bmatrix}.$ Hence, the least squares line is $y=\frac{2}{7}$ $\frac{2}{7} + \frac{5}{14}x.$

