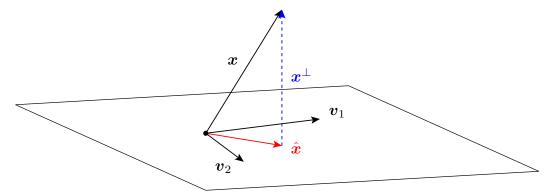
Review

Let W be a subspace of \mathbb{R}^n , and x in \mathbb{R}^n (but maybe not in W).



Let \hat{x} be the orthogonal projection of x onto W.

(vector in W as close as possible to \boldsymbol{x})

• If v_1, \ldots, v_m is an orthogonal basis of W, then

$$\hat{\boldsymbol{x}} = \underbrace{\left(\frac{\boldsymbol{x} \cdot \boldsymbol{v}_1}{\boldsymbol{v}_1 \cdot \boldsymbol{v}_1}\right)}_{\text{proj. of } \boldsymbol{x} \text{ onto } \boldsymbol{v}_1} + \ldots + \underbrace{\left(\frac{\boldsymbol{x} \cdot \boldsymbol{v}_m}{\boldsymbol{v}_m \cdot \boldsymbol{v}_m}\right)}_{\text{proj. of } \boldsymbol{x} \text{ onto } \boldsymbol{v}_m}$$

The decomposition $x = \underbrace{\hat{x}}_{\text{in } W} + \underbrace{x^{\perp}}_{\text{in } W^{\perp}}$ is unique.

Least squares

Definition 1. \hat{x} is a least squares solution of the system Ax = b if \hat{x} is such that $A\hat{x} - b$ is as small as possible.

- If Ax = b is consistent, then a least squares solution \hat{x} is just an ordinary solution. (in that case, $A\hat{x} - b = 0$) Interesting case: Ax = b is inconsistent. (in other words: the system is overdetermined) **Idea.** $A\mathbf{x} = \mathbf{b}$ is consistent $\iff \mathbf{b}$ is in Col(A) $A \boldsymbol{x}$ So, if Ax = b is inconsistent, we b replace **b** with its projection $\hat{\mathbf{b}}$ onto $\operatorname{Col}(A)$,
- •
- and solve $A\hat{x} = \hat{b}$. (consistent by construction!)

Example 2. Find the least squares solution to Ax = b, where

$$A = \begin{bmatrix} 1 & 1 \\ -1 & 1 \\ 0 & 0 \end{bmatrix}, \quad \boldsymbol{b} = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}.$$

Solution. Note that the columns of *A* are orthogonal.

[Otherwise, we could not proceed in the same way.]

Hence, the projection $\hat{\boldsymbol{b}}$ of \boldsymbol{b} onto $\operatorname{Col}(A)$ is

$$\hat{\boldsymbol{b}} = \frac{\begin{bmatrix} 2\\1\\1 \end{bmatrix} \cdot \begin{bmatrix} 1\\-1\\0 \end{bmatrix} \cdot \begin{bmatrix} 1\\-1\\0 \end{bmatrix} \left[\begin{array}{c} 1\\-1\\0 \end{bmatrix} \cdot \begin{bmatrix} 1\\-1\\0 \end{bmatrix} \right] + \frac{\begin{bmatrix} 2\\1\\1\\1\\0 \end{bmatrix} \cdot \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix} \left[\begin{array}{c} 1\\1\\0\\0 \end{bmatrix} \right] \left[\begin{array}{c} 1\\1\\0\\0 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1\\-1\\0 \end{bmatrix} + \frac{3}{2} \begin{bmatrix} 1\\1\\0 \end{bmatrix} = \begin{bmatrix} 2\\1\\0 \end{bmatrix} = \begin{bmatrix} 2\\1\\0 \end{bmatrix} \right]$$

We have already solved $A\hat{x} = \hat{b}$ in the process: $\hat{x} = \begin{bmatrix} 1/2 \\ 3/2 \end{bmatrix}$.

The normal equations

The following result provides a straightforward recipe (thanks to the FTLA) to find least squares solutions for any matrix.

[The previous example was only simple because the columns of A were orthogonal.]

Theorem 3. \hat{x} is a least squares solution of Ax = b $\iff A^T A \hat{x} = A^T b$ (the normal equations)

Proof.

 \hat{x} is a least squares solution of Ax = b $\iff A\hat{x} - b$ is as small as possible $\iff A\hat{x} - b$ is orthogonal to Col(A) $\stackrel{\text{FTLA}}{\iff} A\hat{x} - b$ is in $Nul(A^T)$ $\iff A^T(A\hat{x} - b) = 0$ $\iff A^TA\hat{x} = A^Tb$

Example 4. (again) Find the least squares solution to Ax = b, where

$$A = \begin{bmatrix} 1 & 1 \\ -1 & 1 \\ 0 & 0 \end{bmatrix}, \quad b = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}.$$

Solution.

$$A^{T}A = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -1 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$
$$A^{T}\boldsymbol{b} = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

The normal equations $A^T A \hat{x} = A^T b$ are

$$\left[\begin{array}{cc} 2 & 0 \\ 0 & 2 \end{array}\right] \hat{\boldsymbol{x}} = \left[\begin{array}{c} 1 \\ 3 \end{array}\right].$$

Solving, we find (again) $\hat{\boldsymbol{x}} = \begin{bmatrix} 1/2 \\ 3/2 \end{bmatrix}$.

Example 5. Find the least squares solution to Ax = b, where

	4	0]		2	
A =	0	2	,	b =	$\begin{bmatrix} 2\\ 0\\ 11 \end{bmatrix}$	
	1	1.			_ 11 _	

What is the projection of **b** onto Col(A)?

Solution.

$$A^{T}A = \begin{bmatrix} 4 & 0 & 1 \\ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 17 & 1 \\ 1 & 5 \end{bmatrix}$$
$$A^{T}\boldsymbol{b} = \begin{bmatrix} 4 & 0 & 1 \\ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix} = \begin{bmatrix} 19 \\ 11 \end{bmatrix}$$

The normal equations $A^T A \hat{x} = A^T b$ are

$$\begin{bmatrix} 17 & 1 \\ 1 & 5 \end{bmatrix} \hat{\boldsymbol{x}} = \begin{bmatrix} 19 \\ 11 \end{bmatrix}.$$

Solving, we find $\hat{\boldsymbol{x}} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$.

The projection of **b** onto $\operatorname{Col}(A)$ is $A\hat{x} = \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \\ 3 \end{bmatrix}$.

Just to make sure: why is $A\hat{x}$ the projection of **b** onto $\operatorname{Col}(A)$?

Because, for a least squares solution $\hat{\boldsymbol{x}}$, $A\hat{\boldsymbol{x}} - \boldsymbol{b}$ is as small as possible.

The projection $\hat{\boldsymbol{b}}$ of \boldsymbol{b} onto $\operatorname{Col}(A)$ is

 $\hat{\boldsymbol{b}} = A\hat{\boldsymbol{x}}$, with $\hat{\boldsymbol{x}}$ such that $A^T A\hat{\boldsymbol{x}} = A^T \boldsymbol{b}$.

If A has full column rank, this is

(columns of A independent)

$$\hat{\boldsymbol{b}} = A(A^T A)^{-1} A^T \boldsymbol{b}.$$

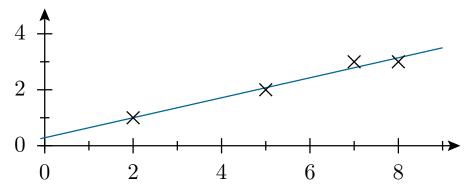
Hence, the projection matrix for projecting onto Col(A) is

 $P = A(A^T A)^{-1} A^T.$

Application: least squares lines

Experimental data: (x_i, y_i)

Wanted: parameters eta_1, eta_2 such that $y_i pprox eta_1 + eta_2 x_i$ for all i

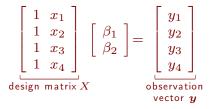


This approximation should be so that

 $SS_{res} = \sum_{i} [y_i - (\beta_1 + \beta_2 x_i)]^2 \text{ is as small as possible.}$ residual sum of squares

Example 6. Find β_1, β_2 such that the line $y = \beta_1 + \beta_2 x$ best fits the data points (2, 1), (5, 2), (7, 3), (8, 3).

Solution. The equations $y_i = \beta_1 + \beta_2 x_i$ in matrix form:



Here, we need to find a least-squares solution to

$$\begin{bmatrix} 1 & 2 \\ 1 & 5 \\ 1 & 7 \\ 1 & 8 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 3 \end{bmatrix}.$$
$$X^T X = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 5 & 7 & 8 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 5 \\ 1 & 7 \\ 1 & 8 \end{bmatrix} = \begin{bmatrix} 4 & 22 \\ 22 & 142 \end{bmatrix}$$
$$X^T \boldsymbol{y} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 5 & 7 & 8 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 3 \end{bmatrix} = \begin{bmatrix} 9 \\ 57 \end{bmatrix}$$

Solving $\begin{bmatrix} 4 & 22 \\ 22 & 142 \end{bmatrix} \hat{\beta} = \begin{bmatrix} 9 \\ 57 \end{bmatrix}$, we find $\begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} 2/7 \\ 5/14 \end{bmatrix}$. Hence, the least squares line is $y = \frac{2}{7} + \frac{5}{14}x$.

