Review

 \bullet Vectors $\boldsymbol{q}_1,...,\boldsymbol{q}_n$ are orthonormal if

$$
\mathbf{q}_i^T \mathbf{q}_j = \left\{ \begin{array}{ll} 0, & \text{if } i \neq j, \\ 1, & \text{if } i = j. \end{array} \right.
$$

• Gram–Schmidt orthonormalization: Input: basis $\boldsymbol{a}_1,...,\boldsymbol{a}_n$ for $V.$ Output: orthonormal basis $\bm{q}_1,...,\bm{q}_n$ for $V.$

> $\bm{b}_1 = \bm{a}_1, \qquad \qquad \bm{q}_1 = \frac{\bm{b}_1}{\|\bm{b}_1\|}$ $\bm{b}_2\!=\bm{a}_2-\langle\bm{a}_2,\bm{q}_1\rangle\bm{q}_1,\qquad\quad \bm{q}_2\!=\!\tfrac{\bm{b}_2}{\mathbb{I} \bm{t}}$ $\bm{b}_3\!=\bm{a}_3\!-\langle \bm{a}_3, \bm{q}_1\rangle\bm{q}_1\!-\langle \bm{a}_3, \bm{q}_2\rangle\bm{q}_2, \hspace{1cm} \bm{q}_3\!=\!\frac{\bm{b}_3}{\mathbb{I}_\mathbf{L}}$

Example 1. Apply Gram-Schmidt to the vectors Г \mathbf{I} 1 $\overline{2}$ $\overline{2}$ 1 \vert , Г $\overline{1}$ 1 1 $\overline{0}$ 1 \vert , Г \mathbf{I} 1 1 1 T .

Solution.

$$
\mathbf{b}_1 = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}, \qquad \mathbf{q}_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} - \left\langle \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \frac{1}{3} \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} \right\rangle \frac{1}{3} \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}, \qquad \mathbf{q}_2 = \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}
$$

$$
\mathbf{b}_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \left\langle \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \mathbf{q}_1 \right\rangle \mathbf{q}_1 - \left\langle \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \mathbf{q}_2 \right\rangle \mathbf{q}_2 = \dots = \frac{1}{9} \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix}, \qquad \mathbf{q}_3 = \begin{bmatrix} 1 \\ 2 \\ 1 \\ 3 \end{bmatrix} - 2 \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}
$$

 $\|\bm{b}_1\|$

 $\|\bm{b}_2\|$

 $\|\boldsymbol{b}_3\|$

We obtained the orthonormal vectors $\frac{1}{3}$ $\sqrt{ }$ T 1 2 2 1 $\Big\vert, \frac{1}{3}$ $\overline{\overline{3}}$ Т T 2 1 −2 1 $\left|,\,\frac{1}{3}\right|$ $\overline{\overline{3}}$ $\sqrt{ }$ T $\overline{2}$ −2 1 1 .

Theorem 2. The columns of an $m \times n$ matrix Q are orthonormal $\iff\ Q^TQ=I$ (the $n\times n$ identity)

Proof. Let $q_1, ..., q_n$ be the columns of Q . They are orthonormal if and only if $\bm{q}_i^T\bm{q}_j$ $=$ $\left\{\begin{array}{ll} 0, & \text{if } i\neq j, \ 1, & \text{if } i = j. \end{array}\right\}$ 1, if $i = j$.

Armin Straub astraub@illinois.edu All these inner products are packaged in $Q^TQ = I$:

$$
\left[\begin{array}{c} \begin{array}{c} \begin{array}{c} \hline \begin{array}{c} \hline \begin{array}{c} \hline \end{array} \\ \hline \begin{array}{c} \hline \end{array} \\ \hline \begin{array}{c} \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \hline \end{array} \\ \hline \end{array} \end{array} \right] = \left[\begin{array}{ccc} \begin{array}{c} \hline \begin{array}{c} \hline \begin{array}{c} \hline \end{array} \\ \hline \begin{array}{c} \hline \end{array} \\ \hline \end{array} \begin{array}{c} \hline \begin{array}{c} \hline \end{array} \\ \hline \end{array} \end{array} \begin{array}{c} \hline \begin{array}{c} \hline \end{array} \\ \hline \end{array} \end{array} \begin{array}{c} \hline \begin{array}{c} \hline \end{array} \\ \hline \end{array} \end{array} \end{array} \begin{array}{c} \hline \begin{array}{c} \hline \begin{array}{c} \hline \end{array} \\ \hline \end{array} \end{array} \end{array} \begin{array}{c} \hline \begin{array}{c} \hline \end{array} \\ \hline \end{array} \end{array} \end{array} \begin{array}{c} \hline \begin{array}{c} \hline \end{array} \\ \hline \end{array} \end{array} \begin{array}{c} \hline \begin{array}{c} \hline \end{array} \\ \hline \end{array} \end{array} \end{array} \begin{array}{c} \hline \begin{array}{c} \hline \begin{array}{c} \hline \end{array} \\ \hline \end{array} \end{array} \begin{array} \hline \begin{array}{c} \hline \end{array} \\ \hline \end{array} \end{array} \end{array} \begin{array} \hline \begin{array}{c} \hline \end{array} \end{array} \begin{array} \hline \begin{array} \hline \end{array} \end{array} \end{array} \begin{array} \hline \begin{array} \hline \end{array} \end{array} \begin{array} \hline \begin{array} \hline \end{array} \end{array} \begin{array} \hline \begin{array} \hline \
$$

Definition 3. An **orthogonal matrix** is a square matrix Q with orthonormal columns.

It is historical convention to restrict to square matrices, and to say orthogonal matrix even though "orthonormal matrix" might be better.

An $n \times n$ matrix Q is orthogonal \iff $Q^TQ = I$ In other words, $Q^{-1} = Q^T$.

Example 4. $P =$ $\sqrt{ }$ $\overline{1}$ 0 0 1 1 0 0 0 1 0 1 | is orthogonal.

In general, all permutation matrices P are orthogonal.

Why? Because their columns are a permutation of the standard basis.

And so we always have $P^T\!P\!=\!I.$

Example 5.
$$
Q = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}
$$

 Q is orthogonal because:

 \bullet $\left[\begin{array}{c} \cos \theta \\ \sin \theta \end{array}\right]$ $\sin \theta$ $\Big\}, \Big[-\sin \theta \over \cos \theta \Big]$ $\overline{}$ is an orthonormal basis of \mathbb{R}^2

Just to make sure: why length 1? Because \Vert $\int \cos \theta$ $\sin \theta$ $\left|\|\right| = \sqrt{\cos^2\theta + \sin^2\theta} = 1.$

• Alternatively: $Q^T Q = \left[\begin{array}{cc} \cos \theta & \sin \theta \\ \sin \theta & \cos \theta \end{array} \right]$ $-\sin \theta \cos \theta$ $\left\|\begin{array}{cc} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{array}\right.$ $= \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right]$

Example 6. Is $H = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ $1 -1$ orthogonal?

No, the columns are orthogonal but not normalized.

But $\frac{1}{\sqrt{2}}$ $\begin{bmatrix} 1 & 1 \end{bmatrix}$ $1 -1$ \vert is an orthogonal matrix.

Just for fun: a $n \times n$ matrix with entries ± 1 whose columns are orthogonal is called a *Hadamard matrix* of size n.

A size 4 example: $\left[\begin{array}{cc} H & H \\ H & H \end{array} \right]$ H – H = Г $\mathbf{\mathbf{I}}$ 1 1 1 1 $1 -1 1 -1$ $1 \quad 1 \quad -1 \quad -1$ $1 -1 -1 1$ 1 $\overline{}$

Continuing this construction, we get examples of size $8, 16, 32, ...$

It is believed that Hadamard matrices exist for all sizes $4n$.

But no example of size 668 is known yet.

 \Box

The QR decomposition (flashed at you)

- Gaussian elimination in terms of matrices: $A = LU$
- Gram–Schmidt in terms of matrices: $A = QR$

Let A be an $m \times n$ matrix of rank n. (columns independent)

- Then we have the **QR decomposition** $A = QR$,
- where Q is $m \times n$ and has orthonormal columns, and
- R is upper triangular, $n \times n$ and invertible.

Idea: Gram–Schmidt on the columns of A , to get the columns of Q .

Example 7. Find the QR decomposition of $A =$ Г \mathbf{I} 1 2 4 0 0 5 0 3 6 1 $\left| \cdot \right|$

Solution. We apply Gram–Schmidt to the columns of A :

 $\sqrt{ }$ $\overline{1}$ 1 $\overline{0}$ $\overline{0}$ 1 \vert = q_1 $\sqrt{ }$ $\overline{1}$ $\overline{2}$ $\overline{0}$ 3 1 \langle $\sqrt{ }$ ΥI 2 $\overline{0}$ 3 1 $\big|, \boldsymbol{q}_1\rangle\boldsymbol{q}_1 \!=\!$ $\sqrt{ }$ $\overline{1}$ $\overline{0}$ $\overline{0}$ 3 1 \vert , Г \mathbf{I} $\overline{0}$ $\overline{0}$ 1 1 \vert = q_2 $\sqrt{ }$ $\overline{1}$ 4 5 6 1 \langle $\sqrt{ }$ ΥĪ 4 5 6 1 $\left\|,\left. \bm{q}_1\right\rangle \bm{q}_1 - \langle\right\|$ Г ΥĪ 4 5 6 1 $\big|, \boldsymbol{q}_2 \rangle \boldsymbol{q}_2 \!=\!$ Г \mathbf{I} $\overline{0}$ 5 $\overline{0}$ 1 \vert , Г $\overline{1}$ $\overline{0}$ 1 $\overline{0}$ 1 $|= q_3$ Hence: Q $=$ $\left[\right.$ \bm{q}_1 $\left. \bm{q}_2$ $\right.$ \bm{q}_3 $\left. \right]$ $=$ \lceil T 1 0 0 0 0 1 0 1 0 1 \mathbb{R} To find R in $A = QR$, note that $Q^T A = Q^T Q R = R$. $R =$ $\sqrt{ }$ \perp 1 0 0 0 0 1 0 1 0 11 Ш IГ II 1 2 4 0 0 5 0 3 6 1 \vert = \lceil Τ 1 2 4 0 3 6 0 0 5 1 \mathbb{R} Summarizing, we have $\sqrt{ }$ 1 2 4 1 \lceil 1 0 0 ון IГ 1 2 4

 $\overline{}$ 0 0 5 0 3 6 \vert \mathbf{I} 0 0 1 0 1 0 Ш II 0 3 6 0 0 5 1 $\left| \cdot \right|$

Recipe. In general, to obtain $A = QR$:

- Gram–Schmidt on (columns of) A , to get (columns of) Q .
- Then, $R = Q^T A$.

The resulting R is indeed upper triangular, and we get:

$$
\left[\begin{array}{ccc} | & | \\ a_1 & a_2 & \cdots \\ | & | & | \end{array}\right] = \left[\begin{array}{ccc} | & | \\ q_1 & q_2 & \cdots \\ | & | & | \end{array}\right] \left[\begin{array}{ccc} q_1^T a_1 & q_1^T a_2 & q_1^T a_3 & \cdots \\ q_2^T a_2 & q_2^T a_3 & \cdots \\ q_3^T a_3 & \cdots & q_3^T a_3 \end{array}\right]
$$

It should be noted that, actually, no extra work is needed for computing R : all the inner products in R have been computed during Gram–Schmidt.

(Just like the LU decomposition encodes the steps of Gaussian elimination, the QR decomposition encodes the steps of Gram–Schmidt.)

Practice problems

Example 8. Complete $\frac{1}{3}$ $\sqrt{ }$ 4 1 2 2 1 $\Big\vert, \frac{1}{3}$ 3 Г $\overline{}$ $\frac{-2}{1}$ −1 2 $\Big]$ to an orthonormal basis of $\mathbb{R}^3.$

- (a) by using the FTLA to determine the orthogonal complement of the span you already have
- (b) by using Gram–Schmidt after throwing in an independent vector such as $\sqrt{ }$ $\overline{1}$ 1 $\overline{0}$ $\overline{0}$ 1 \mathbf{I}

Example 9. Find the QR decomposition of $A =$ Г \mathbf{I} 1 1 2 0 0 1 1 0 0 l $\left| \cdot \right|$