Review

- The **determinant** is characterized by $\det I = 1$ and the effect of row op's:
 - replacement: does not change the determinant
 - o interchange: reverses the sign of the determinant
 - \circ scaling row by s: multiplies the determinant by s

$$\bullet \quad \begin{vmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 1 & 5 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 3 \end{vmatrix} = 1 \cdot 2 \cdot 2 \cdot 3 = 12$$

- $\det(A) = 0 \iff A$ is not invertible
- $\det(AB) = \det(A)\det(B)$
- $\det(A^{-1}) = \frac{1}{\det(A)}$
- $\det(A^T) = \det(A)$
- What's wrong?!

$$\det (A^{-1}) = \det \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \frac{1}{ad - bc} (da - (-b)(-c)) = 1$$

The corrected calculation is:

$$\det \frac{1}{a d - b c} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \frac{1}{(a d - b c)^2} (d a - (-b)(-c)) = \frac{1}{a d - b c}$$

This is compatible with det $(A^{-1}) = \frac{1}{\det(A)}$.

Example 1. Suppose A is a 3×3 matrix with det (A) = 5. What is det (2A)?

Solution. A has three rows. Multiplying all 3 of them by 2 produces 2A. Hence, det $(2A) = 2^3 det (A) = 40$.

A "bad" way to compute determinants

Example 2. Compute $\begin{vmatrix} 1 & 2 & 0 \\ 3 & -1 & 2 \\ 2 & 0 & 1 \end{vmatrix}$ by cofactor expansion.

Solution. We expand by the second column:

Solution. We expand by the third column:

Why is the method of cofactor expansion not practical?

Because to compute a large $n \times n$ determinant,

- one reduces to n determinants of size $(n-1) \times (n-1)$,
- then n(n-1) determinants of size $(n-2) \times (n-2)$,
- and so on.

In the end, we have $n! = n(n-1)\cdots 3 \cdot 2 \cdot 1$ many numbers to add.

WAY TOO MUCH WORK! Already $25! = 15511210043330985984000000 \approx 1.55 \cdot 10^{25}$.

Context: today's fastest computer, Tianhe-2, runs at 34 pflops $(3.4 \cdot 10^{16} \text{ op's per second})$.

By the way: "fastest" is measured by computed LU decompositions!

Example 3.

First off, say hello to a new friend: i, the **imaginary unit**

It is infamous for $i^2 = -1$.

$$\begin{vmatrix} 1 &| &= 1 \\ \begin{vmatrix} 1 & i \\ i & 1 &| \\ = 1 - i^{2} = 2 \\ \begin{vmatrix} 1 & i \\ i & 1 &i \\ i & 1 &i \\ i & 1 &| \\ \end{vmatrix} = 1 \begin{vmatrix} 1 & i \\ i & 1 &| \\ -i &| i & 1 \\ i & 1 &i \\ i & 1 &i \\ \end{vmatrix} = 2 - i^{2} = 3$$
$$\begin{vmatrix} 1 & i \\ i & 1 &i \\ i & 1 &i \\ i & 1 &i \\ i & 1 &| \\ \end{vmatrix} = 1 \begin{vmatrix} 1 & i \\ i & 1 &i \\ i & 1 &| \\ -i &| i & 1 \\ i & 1 &| \\ \end{vmatrix} = 3 - i^{2} \begin{vmatrix} 1 & i \\ i & 1 &| \\ = 5 \end{vmatrix}$$

Armin Straub astraub@illinois.edu

$$\begin{vmatrix} 1 & i & & \\ i & 1 & i & \\ & i & 1 & i & \\ & & i & 1 & i & \\ & & & i & 1 & \\ & & & & i & 1 \\ \end{vmatrix} = 1 \begin{vmatrix} 1 & i & & \\ i & 1 & i & \\ & i & 1 & i & \\ & & i & 1 & \\ & & & i & 1 \\ \end{vmatrix} = 1 \begin{vmatrix} 1 & i & & \\ i & 1 & i & \\ & & i & 1 & \\ & & & i & 1 \\ \end{vmatrix} = -1 \begin{vmatrix} 1 & i & & \\ i & 1 & i & \\ & & i & 1 & \\ & & & i & 1 \\ \end{vmatrix} = -1 \begin{vmatrix} 1 & i & & \\ i & 1 & i & \\ & & & i & 1 \\ & & & i & 1 \\ \end{vmatrix} = -1 \begin{vmatrix} 1 & i & & \\ i & 1 & i & \\ & & & i & 1 \\ & & & i & 1 \\ \end{vmatrix} = -1 \begin{vmatrix} 1 & i & & \\ i & 1 & i & \\ & & & i & 1 \\ & & & i & 1 \\ \end{vmatrix} = -1 \begin{vmatrix} 1 & i & & \\ i & 1 & i & \\ & & & i & 1 \\ & & & i & 1 \\ \end{vmatrix} = -1 \begin{vmatrix} 1 & i & & \\ i & 1 & i & \\ & & & i & 1 \\ \end{vmatrix} = -1 \begin{vmatrix} 1 & i & & \\ i & 1 & i & \\ & & & i & 1 \\ \end{vmatrix} = -1 \begin{vmatrix} 1 & i & & \\ i & 1 & i & \\ & & & i & 1 \\ \end{vmatrix} = -1 \begin{vmatrix} 1 & i & & \\ i & 1 & i & \\ & & & i & 1 \\ \end{vmatrix} = -1 \begin{vmatrix} 1 & i & & \\ i & 1 & i & \\ & & & i & 1 \\ \end{vmatrix} = -1 \begin{vmatrix} 1 & i & & \\ i & 1 & i & \\ & & & i & 1 \\ \end{vmatrix} = -1 \begin{vmatrix} 1 & i & & \\ i & 1 & i & \\ & & & i & 1 \\ \end{vmatrix} = -1 \begin{vmatrix} 1 & i & & \\ i & 1 & i & \\ & & & i & 1 \\ \end{vmatrix} = -1 \begin{vmatrix} 1 & i & & \\ i & 1 & i & \\ & & & i & 1 \\ \end{vmatrix} = -1 \begin{vmatrix} 1 & i & & \\ i & 1 & i & \\ & & & i & 1 \\ \end{vmatrix} = -1 \begin{vmatrix} 1 & i & & \\ i & 1 & i & \\ & & & i & 1 \\ \end{vmatrix} = -1 \begin{vmatrix} 1 & i & & \\ i & 1 & i & \\ & & & i & 1 \\ \end{vmatrix} = -1 \begin{vmatrix} 1 & i & & \\ i & 1 & i & \\ & & & i & 1 \\ \end{vmatrix} = -1 \begin{vmatrix} 1 & i & & \\ i & 1 & i & \\ & & & i & 1 \\ \end{vmatrix} = -1 \begin{vmatrix} 1 & i & & \\ i & 1 & i & \\ & & & i & 1 \\ \end{vmatrix} = -1 \begin{vmatrix} 1 & i & & \\ i & 1 & i & \\ & & & i & 1 \\ \end{vmatrix} = -1 \begin{vmatrix} 1 & i & & \\ i & 1 & i & \\ & & & i & 1 \\ \end{vmatrix} = -1 \end{vmatrix} = -1 \begin{vmatrix} 1 & i & & \\ i & 1 & i & \\ & & & i & 1 \\ \end{vmatrix} = -1 \begin{vmatrix} 1 & i & & \\ i & 1 & i & \\ & & & i & 1 \\ \end{vmatrix} = -1 \end{vmatrix} = -1 \begin{vmatrix} 1 & i & & \\ i & 1 & i & \\ & & & i & 1 \\ \end{vmatrix} = -1 \begin{vmatrix} 1 & i & & \\ i & 1 & i & \\ & & & i & 1 \\ \end{vmatrix} = -1 \begin{vmatrix} 1 & i & & \\ 1 & i & 1 \\ \vdots = -1 \end{vmatrix} = -1$$
 = -1 \end{vmatrix} = -1 = -1 \\ = -1 & -1 & = -1 \end{matrix} = -1 \end{matrix} = -1 \end{matrix} = -1 = -1 \\ = -1 & = -1 & -1 & = -1 \end{matrix} = -1 \end{matrix} = -1 \end{matrix} = -1 = -1 \\ = -1 & = -1 & -1 & = -1 \end{matrix} = -1 & = -1 \end{matrix} =

The Fibonacci numbers!

Do you know about the connection of Fibonacci numbers and rabbits?

Eigenvectors and eigenvalues

Throughout, A will be an $n \times n$ matrix.

Definition 4. An **eigenvector** of A is a nonzero \boldsymbol{x} such that

 $A \boldsymbol{x} = \lambda \boldsymbol{x}$ for some scalar λ .

The scalar λ is the corresponding **eigenvalue**.

In words: eigenvectors are those \boldsymbol{x} , for which $A\boldsymbol{x}$ is parallel to \boldsymbol{x} .

Example 5. Verify that $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$ is an eigenvector of $A = \begin{bmatrix} 0 & -2 \\ -4 & 2 \end{bmatrix}$.

Solution.

 $A \boldsymbol{x} = \begin{bmatrix} 0 & -2 \\ -4 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \end{bmatrix} = \begin{bmatrix} 4 \\ -8 \end{bmatrix} = 4 \boldsymbol{x}$

Hence, \boldsymbol{x} is an eigenvector of A with eigenvalue 4.

Example 6. Use your geometric understanding to find the eigenvectors and eigenvalues of $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

Solution. $A\begin{bmatrix} x\\ y\end{bmatrix} = \begin{bmatrix} y\\ x\end{bmatrix}$

i.e. multiplication with A is reflection through the line y = x.

• $A\begin{bmatrix} 1\\1 \end{bmatrix} = 1 \cdot \begin{bmatrix} 1\\1 \end{bmatrix}$

So: $\boldsymbol{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is an eigenvector with eigenvalue $\lambda = 1$.

• $A\begin{bmatrix} -1\\ 1 \end{bmatrix} = \begin{bmatrix} 1\\ -1 \end{bmatrix} = -1 \cdot \begin{bmatrix} -1\\ 1 \end{bmatrix}$

So: $\boldsymbol{x} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ is an eigenvector with eigenvalue $\lambda = -1$.

Practice problems

Problem 1. Let A be an $n \times n$ matrix. Express the following in terms of det (A):

- $\det(A^2) =$
- $\det(2A) =$

```
Hint: (unless n = 1) this is not just 2 \det (A)
```