Review

- If $Ax = \lambda x$, then x is an eigenvector of A with eigenvalue λ .
- EG: $\boldsymbol{x} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$ is an eigenvector of $A = \begin{bmatrix} 0 & -2 \\ -4 & 2 \end{bmatrix}$ with eigenvalue 4 because $A\boldsymbol{x} = \begin{bmatrix} 0 & -2 \\ -4 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \end{bmatrix} = \begin{bmatrix} 4 \\ -8 \end{bmatrix} = 4\boldsymbol{x}$
- Multiplication with $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ is reflection through the line y = x.
 - $A\begin{bmatrix} 1\\1 \end{bmatrix} = 1 \cdot \begin{bmatrix} 1\\1 \end{bmatrix}$ So: $\boldsymbol{x} = \begin{bmatrix} 1\\1 \end{bmatrix}$ is an eigenvector with eigenvalue $\lambda = 1$.

So: $\boldsymbol{x} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ is an eigenvector with eigenvalue $\lambda = -1$.

Example 1. Use your geometric understanding to find the eigenvectors and eigenvalues of $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$.

Solution. $A\begin{bmatrix} x\\ y\end{bmatrix} = \begin{bmatrix} x\\ 0\end{bmatrix}$

i.e. multiplication with A is projection onto the x-axis.

• $A\begin{bmatrix}1\\0\end{bmatrix} = 1 \cdot \begin{bmatrix}1\\0\end{bmatrix}$

So: $\boldsymbol{x} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ is an eigenvector with eigenvalue $\lambda = 1$.

• $A\begin{bmatrix} 0\\1 \end{bmatrix} = \begin{bmatrix} 0\\0 \end{bmatrix} = 0 \cdot \begin{bmatrix} 0\\1 \end{bmatrix}$ So: $\boldsymbol{x} = \begin{bmatrix} 0\\1 \end{bmatrix}$ is an eigenvector with eigenvalue $\lambda = 0$.

Armin Straub astraub@illinois.edu **Example 2.** Let P be the projection matrix corresponding to orthogonal projection onto the subspace V. What are the eigenvalues and eigenvectors of P?

Solution.

• For every vector \boldsymbol{x} in V, $P\boldsymbol{x} = \boldsymbol{x}$.

These are the eigenvectors with eigenvalue 1.

• For every vector \boldsymbol{x} orthogonal to V, $P\boldsymbol{x} = \boldsymbol{0}$.

These are the eigenvectors with eigenvalue 0.

Definition 3. Given λ , the set of all eigenvectors with eigenvalue λ is called the **eigenspace** of A corresponding to λ .

Example 4. (continued) We saw that the projection matrix P has the two eigenvalues $\lambda = 0, 1$.

- The eigenspace of $\lambda = 1$ is V.
- The eigenspace of $\lambda = 0$ is V^{\perp} .

How to solve $Ax = \lambda x$

Key observation:

 $A\boldsymbol{x} = \lambda \boldsymbol{x}$ $\iff A\boldsymbol{x} - \lambda \boldsymbol{x} = \boldsymbol{0}$ $\iff (A - \lambda I)\boldsymbol{x} = \boldsymbol{0}$

This has a nonzero solution $\iff \det(A - \lambda I) = 0$

Recipe. To find eigenvectors and eigenvalues of A.

- First, find the eigenvalues λ using: λ is an eigenvalue of $A \iff \det(A - \lambda I) = 0$
- Then, for each eigenvalue λ , find corresponding eigenvectors by solving $(A \lambda I)\mathbf{x} = \mathbf{0}$.

Example 5. Find the eigenvectors and eigenvalues of

$$A = \left[\begin{array}{cc} 3 & 1 \\ 1 & 3 \end{array} \right].$$

Solution.

- $A \lambda I = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 \lambda & 1 \\ 1 & 3 \lambda \end{bmatrix}$
- $\det (A \lambda I) = \begin{vmatrix} 3-\lambda & 1\\ 1 & 3-\lambda \end{vmatrix} = (3-\lambda)^2 1$ $= \lambda^2 6\lambda + 8 = 0 \implies \lambda_1 = 2, \ \lambda_2 = 4$

This is the characteristic polynomial of A. Its roots are the eigenvalues of A.

• Find eigenvectors with eigenvalue $\lambda_1 = 2$: $A - \lambda_1 I = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ $(A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix})$ Solutions to $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \mathbf{x} = \mathbf{0}$ have basis $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$. So: $\mathbf{x}_1 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ is an eigenvector with eigenvalue $\lambda_1 = 2$. All other eigenvectors with $\lambda = 2$ are multiples of \mathbf{x}_1 . span $\left\{ \begin{bmatrix} -1 \\ 1 \end{bmatrix} \right\}$ is the eigenspace for eigenvalue $\lambda = 2$. • Find eigenvectors with eigenvalue $\lambda_2 = 4$: $A - \lambda_2 I = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}$ $(A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix})$ Solutions to $\begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \mathbf{x} = \mathbf{0}$ have basis $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$. So: $\mathbf{x}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is an eigenvector with eigenvalue $\lambda_2 = 4$.

The eigenspace for eigenvalue $\lambda = 4$ is span $\left\{ \begin{bmatrix} 1\\1 \end{bmatrix} \right\}$.

Example 6. Find the eigenvectors and the eigenvalues of

	3	2	3]
A =	0	6	10	
	0	0	2	

Solution.

• The characteristic polynomial is:

 $\det (A - \lambda I) = \begin{vmatrix} 3 - \lambda & 2 & 3 \\ 0 & 6 - \lambda & 10 \\ 0 & 0 & 2 - \lambda \end{vmatrix} = (3 - \lambda)(6 - \lambda)(2 - \lambda)$

• A has eigenvalues 2, 3, 6.

The eigenvalues of a triangular matrix are its diagonal entries.

• $\lambda_1 = 2$:

$$(A - \lambda_1 I) \boldsymbol{x} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 10 \\ 0 & 0 & 0 \end{bmatrix} \boldsymbol{x} = \boldsymbol{0} \implies \boldsymbol{x}_1 = \begin{bmatrix} 2 \\ -5/2 \\ 1 \end{bmatrix}$$

Armin Straub astraub@illinois.edu $A = \left| \begin{array}{ccc} 3 & 2 & 3 \\ 0 & 6 & 10 \\ 0 & 0 & 2 \end{array} \right|$

•
$$\lambda_2 = 3$$
:
 $(A - \lambda_2 I) \boldsymbol{x} = \begin{bmatrix} 0 & 2 & 3 \\ 0 & 3 & 10 \\ 0 & 0 & -1 \end{bmatrix} \boldsymbol{x} = \boldsymbol{0} \implies \boldsymbol{x}_2 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$

• $\lambda_3 = 6$:

$$(A - \lambda_3 I) \boldsymbol{x} = \begin{bmatrix} -3 & 2 & 3 \\ 0 & 0 & 10 \\ 0 & 0 & -4 \end{bmatrix} \boldsymbol{x} = \boldsymbol{0} \implies \boldsymbol{x}_3 = \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix}$$

• In summary, A has eigenvalues 2, 3, 6 with corresponding eigenvectors $\begin{bmatrix} 2\\ -5/2\\ 1 \end{bmatrix}, \begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}, \begin{bmatrix} 2/3\\ 1\\ 0 \end{bmatrix}$.

These three vectors are independent. By the next result, this is always so.

Theorem 7. If $x_1, ..., x_m$ are eigenvectors of A corresponding to different eigenvalues, then they are independent.

Why?

Suppose, for contradiction, that $\boldsymbol{x}_1, ..., \boldsymbol{x}_m$ are dependent.

By kicking out some of the vectors, we may assume that there is (up to multiples) only one linear relation: $c_1 x_1 + ... + c_m x_m = 0$.

Multiply this relation with A:

 $A(c_1\boldsymbol{x}_1 + \ldots + c_m\boldsymbol{x}_m) = c_1\lambda_1\boldsymbol{x}_1 + \ldots + c_m\lambda_m\boldsymbol{x}_m = \boldsymbol{0}$ This is a second independent relation! Contradiction.

Practice problems

Example 8. Find the eigenvectors and eigenvalues of $A = \begin{bmatrix} 0 & -2 \\ -4 & 2 \end{bmatrix}$.

Example 9. What are the eigenvalues of $A = \begin{bmatrix} 2 & 0 & 0 & 0 \\ -1 & 3 & 0 & 0 \\ -1 & 1 & 3 & 0 \\ 0 & 1 & 2 & 4 \end{bmatrix}$?

No calculations!