Review

- If $Ax = \lambda x$, then x is an eigenvector of A with eigenvalue λ .
- EG: $x = \begin{bmatrix} 1 \end{bmatrix}$ −2 $\Big\{$ is an eigenvector of $A=\Big[\begin{array}{cc} 0 & -2 \ -4 & 2 \end{array}\Big]$ with eigenvalue 4 because $A\bm{x}\!=\!\left[\begin{array}{cc} 0 & -2 \ -4 & 2 \end{array}\right]\!\left[\begin{array}{c} 1 \ 2 \end{array}\right]$ $]= \begin{bmatrix} 4 \end{bmatrix}$ −8 $]= 4x$
- \bullet Multiplication with $A=\scriptsize\left[\begin{array}{cc} 0 & 1 \ 1 & 0 \end{array}\right]$ is reflection through the line $y\,{=}\,x.$
	- \circ $A\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ 1 $= 1 \cdot \left[\begin{array}{c} 1 \\ 1 \end{array} \right]$ 1 1 So: $\boldsymbol{x} = \left[\begin{array}{c} 1 \ 1 \end{array} \right]$ 1 $\overline{}$ is an eigenvector with eigenvalue $\lambda=1.$ \circ $A\begin{bmatrix} -1 \\ 1 \end{bmatrix}$ $]=\begin{bmatrix}1\\1\end{bmatrix}$ $=-1 \cdot \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ 1

So:
$$
x = \begin{bmatrix} -1 \\ 1 \end{bmatrix}
$$
 is an eigenvector with eigenvalue $\lambda = -1$.

Example 1. Use your geometric understanding to find the eigenvectors and eigenvalues of $A\!=\!\left[\begin{array}{cc} 1 & 0 \ 0 & 0 \end{array}\right]\!.$

Solution. $A \begin{bmatrix} x \\ y \end{bmatrix}$ \hat{y} $=\begin{bmatrix} x \\ 0 \end{bmatrix}$ 0 1

i.e. multiplication with A is projection onto the x-axis.

 \bullet $A \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ 0 $= 1 \cdot \left[\begin{array}{c} 1 \\ 0 \end{array} \right]$ 0 1

> So: $\boldsymbol{x} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ $\overline{0}$ $\overline{}$ is an eigenvector with eigenvalue $\lambda\!=\!1.$

 \bullet A_1^0 1 $=$ $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ 0 $= 0 \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ 1 1 So: $\boldsymbol{x} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ 1 $\overline{}$ is an eigenvector with eigenvalue $\lambda\!=\!0.$

Armin Straub astraub@illinois.edu

Example 2. Let P be the projection matrix corresponding to orthogonal projection onto the subspace V. What are the eigenvalues and eigenvectors of P ?

Solution.

• For every vector x in V, $Px = x$.

These are the eigenvectors with eigenvalue 1.

• For every vector x orthogonal to V, $Px = 0$.

These are the eigenvectors with eigenvalue 0.

Definition 3. Given λ , the set of all eigenvectors with eigenvalue λ is called the eigenspace of A corresponding to λ .

Example 4. (continued) We saw that the projection matrix P has the two eigenvalues $\lambda = 0, 1$.

- The eigenspace of $\lambda = 1$ is V.
- The eigenspace of $\lambda = 0$ is V^{\perp} .

How to solve $Ax = \lambda x$

Key observation:

 $Ax = \lambda x$ $\iff Ax - \lambda x = 0$ \iff $(A - \lambda I)x = 0$

This has a nonzero solution \iff det $(A - \lambda I) = 0$

Recipe. To find eigenvectors and eigenvalues of A.

- First, find the eigenvalues λ using: λ is an eigenvalue of $A \iff \det(A - \lambda I) = 0$
- Then, for each eigenvalue λ , find corresponding eigenvectors by solving $(A - \lambda I)x = 0$.

Example 5. Find the eigenvectors and eigenvalues of

$$
A = \left[\begin{array}{cc} 3 & 1 \\ 1 & 3 \end{array} \right].
$$

Solution.

- $A \lambda I = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 \lambda & 1 \\ 1 & 3 \lambda \end{bmatrix}$ 1 $3 - \lambda$ 1
- det $(A \lambda I) =$ $3 - \lambda$ 1 1 $3 - \lambda$ $= (3 - \lambda)^2 - 1$ $= \lambda^2 - 6\lambda + 8 = 0 \implies \lambda_1 = 2, \lambda_2 = 4$

This is the characteristic polynomial of A . Its roots are the eigenvalues of A .

• Find eigenvectors with eigenvalue $\lambda_1 = 2$: $A - \lambda_1 I = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ $(A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix})$ Solutions to $\left[\begin{array}{cc} 1 & 1 \ 1 & 1 \end{array}\right] \bm{x} = \bm{0}$ have basis $\left[\begin{array}{cc} -1 \ 1 \end{array}\right]$ 1 . So: $\boldsymbol{x}_1 = \left[\begin{array}{c} -1 \ 1 \end{array} \right]$ 1 $\big]$ is an eigenvector with eigenvalue $\lambda_1\!=\!2.$ All other eigenvectors with $\lambda = 2$ are multiples of x_1 . $\text{span}\left\{\left[-\frac{1}{2}\right]$ $\left\{ \begin{array}{c} -1 \ 1 \end{array} \right\}$ is the **eigenspace** for eigenvalue $\lambda\!=\!2.5$ • Find eigenvectors with eigenvalue $\lambda_2 = 4$: $A - \lambda_2 I = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}$ $1 -1$ 1 $(A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix})$ Solutions to $\begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$ $1 -1$ $\begin{bmatrix} x = \mathbf{0} \end{bmatrix}$ have basis $\begin{bmatrix} 1 \ 1 \end{bmatrix}$ 1 . So: $\boldsymbol{x}_2 = \left[\begin{array}{c} 1 \ 1 \end{array} \right]$ 1 $\big]$ is an eigenvector with eigenvalue $\lambda_2\!=\!4.$

The eigenspace for eigenvalue $\lambda\!=\!4$ is ${\rm span}\Big\{\Big[\,\frac{1}{4}\Big]$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

Example 6. Find the eigenvectors and the eigenvalues of

Solution.

The characteristic polynomial is:

 $\det (A - \lambda I) =$ $3-\lambda$ 2 3 0 $6 - \lambda$ 10 0 0 $2-\lambda$ $= (3 - \lambda)(6 - \lambda)(2 - \lambda)$

A has eigenvalues $2, 3, 6$.

The eigenvalues of a triangular matrix are its diagonal entries.

• $\lambda_1 = 2$:

$$
(A - \lambda_1 I)\mathbf{x} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 10 \\ 0 & 0 & 0 \end{bmatrix} \mathbf{x} = \mathbf{0} \implies \mathbf{x}_1 = \begin{bmatrix} 2 \\ -5/2 \\ 1 \end{bmatrix}
$$

Armin Straub astraub@illinois.edu T $\overline{1}$

3 2 3 0 6 10 0 0 2

1 \mathbf{I}

- $\lambda_2 = 3$ $(A - \lambda_2 I)x =$ \mathbf{I} 0 2 3 0 3 10 $0 \t 0 \t -1$ $\begin{bmatrix} x = \mathbf{0} \implies x_2 = \end{bmatrix}$ $\overline{1}$ 1 0 0 1 \mathbf{I}
- $\lambda_3 = 6$:

$$
(A - \lambda_3 I)\mathbf{x} = \begin{bmatrix} -3 & 2 & 3 \\ 0 & 0 & 10 \\ 0 & 0 & -4 \end{bmatrix} \mathbf{x} = \mathbf{0} \implies \mathbf{x}_3 = \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix}
$$

• In summary, \overline{A} has eigenvalues $2,3,6$ with corresponding eigenvectors \overline{S} $\overline{1}$ 2 $-5/2$ 1 T \vert , Г $\overline{1}$ 1 0 0 T nmary, A has eigenvalues $2,3,6$ with corresponding eigenvectors $\left[\begin{array}{c} -5/2\ 1 \end{array}\right],\left[\begin{array}{c} 0\ 0 \end{array}\right],$ T $\overline{1}$ $2/3$ 1 0 $\left| \cdot \right|$

These three vectors are independent. By the next result, this is always so.

Theorem 7. If $x_1, ..., x_m$ are eigenvectors of A corresponding to different eigenvalues, then they are independent.

Why?

Suppose, for contradiction, that $\boldsymbol{x}_1,...,\boldsymbol{x}_m$ are dependent.

By kicking out some of the vectors, we may assume that there is (up to multiples) only one linear relation: $c_1\boldsymbol{x}_1 + ... + c_m\boldsymbol{x}_m = \boldsymbol{0}$.

Multiply this relation with A:

 $A(c_1\boldsymbol{x}_1 + ... + c_m\boldsymbol{x}_m) = c_1\lambda_1\boldsymbol{x}_1 + ... + c_m\lambda_m\boldsymbol{x}_m = \boldsymbol{0}$

This is a second independent relation! Contradiction.

Practice problems

Example 8. Find the eigenvectors and eigenvalues of $A = \begin{bmatrix} 0 & -2 \ -4 & 2 \end{bmatrix}$.

Example 9. What are the eigenvalues of $A =$ Г \parallel 2 0 0 0 −1 3 0 0 −1 1 3 0 0 1 2 4 1 $\overline{}$?

No calculations!