Review

• If $Ax = \lambda x$, then x is an eigenvector of A with eigenvalue λ .

All eigenvectors (plus 0) with eigenvalue λ form the eigenspace of λ .

• λ is an eigenvalue of $A \iff$ characteristic polynomial $= 0.$

Why? Because $Ax = \lambda x \iff (A - \lambda I)x = 0$.

By the way: this means that the eigenspace of λ is just $\text{Nul}(A - \lambda I)$.

- E.g., if $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ $\overline{1}$ 3 2 3 0 6 10 $0 \quad 0 \quad 2$ then det $(A - \lambda I) = (3 - \lambda)(6 - \lambda)(2 - \lambda)$.
- \bullet Eigenvectors $\boldsymbol{x}_1,...,\boldsymbol{x}_m$ of A corresponding to different eigenvalues are independent.
- By the way:
	- \circ product of eigenvalues $=$ determinant
	- \circ sum of eigenvalues $=$ "trace" (sum of diagonal entries)

Example 1. Find the eigenvalues of A as well as a basis for the corresponding eigenspaces, where

$$
A = \begin{bmatrix} 2 & 0 & 0 \\ -1 & 3 & 1 \\ -1 & 1 & 3 \end{bmatrix}.
$$

Solution.

• The characteristic polynomial is:

$$
\det(A - \lambda I) = \begin{vmatrix} 2 - \lambda & 0 & 0 \\ -1 & 3 - \lambda & 1 \\ -1 & 1 & 3 - \lambda \end{vmatrix}
$$

$$
= (2 - \lambda) \begin{vmatrix} 3 - \lambda & 1 \\ 1 & 3 - \lambda \end{vmatrix}
$$

$$
= (2 - \lambda)[(3 - \lambda)^2 - 1]
$$

$$
= (2 - \lambda)(\lambda - 2)(\lambda - 4)
$$

• A has eigenvalues $2, 2, 4$.

Г \mathbf{I} 2 0 0 −1 3 1 −1 1 3 1 \mathbf{I}

Since $\lambda = 2$ is a double root, it has (algebraic) multiplicity 2.

• $\lambda_1 = 2$:

$$
(A - \lambda_1 I)\mathbf{x} = \begin{bmatrix} 0 & 0 & 0 \\ -1 & 1 & 1 \\ -1 & 1 & 1 \end{bmatrix} \mathbf{x} = \mathbf{0}
$$

Armin Straub astraub@illinois.edu Two independent solutions: $\boldsymbol{x}_1 \!=\! \left\lceil \right.$ \mathbf{I} 1 1 $\overline{0}$ $\Big|$, $x_2 = \Big[$ $\overline{1}$ $\overline{0}$ −1 1 l \mathbf{I} In other words: the eigenspace for $\lambda\!=\!2$ is ${\rm span}\! \biggl\{ \biggl[$ 1 1 $\overline{0}$ 1 \vert , Г \mathbf{I} $\overline{0}$ −1 1 l \mathbf{I})

 $\lambda_2 = 4$:

$$
(A - \lambda_2 I)\boldsymbol{x} = \begin{bmatrix} -2 & 0 & 0 \\ -1 & -1 & 1 \\ -1 & 1 & -1 \end{bmatrix} \boldsymbol{x} = \boldsymbol{0} \implies \boldsymbol{x}_3 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}
$$

- In summary, A has eigenvalues 2 and 4:
	- \circ eigenspace for $\lambda\!=\!2$ has basis $\overline{\hspace{0.1cm}}$ $\overline{1}$ 1 1 $\overline{0}$ 1 \vert ,
	- \circ eigenspace for $\lambda\!=\!4$ has basis $\boxed{ }$ $\overline{1}$ $\overline{0}$ 1 1

An $n \times n$ matrix A has up to n different eigenvalues.

Namely, the roots of the degree *n* characteristic polynomial det $(A - \lambda I)$.

• For each eigenvalue λ , A has at least one eigenvector.

That's because $\text{Nul}(A - \lambda I)$ has dimension at least 1.

If λ has multiplicity m, then A has up to m (independent) eigenvectors for λ .

Г \mathbf{I}

1 .

 $\overline{0}$ −1 1

1 \vert ,

Ideally, we would like to find a total of n (independent) eigenvectors of A.

Why can there be no more than n eigenvectors?!

Two sources of trouble: eigenvalues can be

- complex numbers (that is, not enough real roots), or
- repeated roots of the characteristic polynomial.

Example 2. Find the eigenvectors and eigenvalues of $A\!=\!\left[\begin{array}{cc} 0 & -1 \ 1 & 0 \end{array}\right]$. Geometrically, what is the trouble?

i.e. multiplication with \tilde{A} is rotation by 90° (counter-clockwise).

.

Which vector is parallel after rotation by 90° ? Trouble.

Fix: work with complex numbers!

• det $(A - \lambda I) =$ $-\lambda$ -1 1 $-\lambda$ $= \lambda^2 + 1$

So, the eigenvalues are $\lambda_1 = i$ and $\lambda_2 = -i$.

- $\lambda_1 = i: \begin{bmatrix} -i & -1 \\ 1 & i \end{bmatrix}$ $1 - i$ $x = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ $\overline{0}$ $\Big] \implies x_1 = \Big[\begin{array}{c} i \ i \end{array} \Big]$ 1 1 Let us check: $\left[\begin{array}{cc} 0 & -1 \ 1 & 0 \end{array}\right]\left[\begin{array}{c} i \ 1 \end{array}\right]$ $]=\begin{bmatrix} -1 \\ 1 \end{bmatrix}$ i $]=i\begin{bmatrix} i \\ i \end{bmatrix}$ 1 1
- $\lambda_2 = -i: \begin{bmatrix} i & -1 \\ 1 & i \end{bmatrix}$ 1 i $x = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ $\overline{0}$ $\big] \implies x_2 = \big[\begin{smallmatrix} -i \ 1 \end{smallmatrix} \big]$ 1 1

Example 3. Find the eigenvectors and eigenvalues of $A = \begin{bmatrix} 1 & 1 \ 0 & 1 \end{bmatrix}$. What is the trouble?

Solution.

• det $(A - \lambda I) =$ $1 - \lambda$ 1 $0 \quad 1 - \lambda$ $= (1 - \lambda)^2$

So: $\lambda = 1$ is the only eigenvalue (it has multiplicity 2).

- $(A \lambda I)\boldsymbol{x} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \boldsymbol{x} = \boldsymbol{0} \implies \boldsymbol{x}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ $\overline{0}$ 1 So: the eigenspace is $\operatorname{span}\Bigl\{\Bigl\lceil \frac{1}{\alpha}\Bigr\rceil$ $\left\{\frac{1}{0}\right\}$. Only dimension 1!
- Trouble: only 1 independent eigenvector for a 2×2 matrix This kind of trouble cannot really be fixed.

We have to lower our expectations and look for *generalized eigenvectors*. These are solutions to $(A - \lambda I)^2 \boldsymbol{x} = \boldsymbol{0}$, $(A - \lambda I)^3 \boldsymbol{x} = \boldsymbol{0}$, ...

Practice problems

Example 4. Find the eigenvectors and eigenvalues of $A =$ Г $\overline{1}$ 1 2 1 $0 -5 0$ 1 8 1 1 .