Review

Eigenvector equation: $Ax = \lambda x \iff (A - \lambda I)x = 0$ λ is an eigenvalue of $A \iff \det(A - \lambda I)$ $= 0.$

characteristic polynomial

- An $n \times n$ matrix A has up to n different eigenvalues λ .
	- \circ The eigenspace of λ is Nul $(A \lambda I)$.

That is, all eigenvectors of A with eigenvalue λ .

- \circ If λ has **multiplicity** m, then A has up to m eigenvectors for λ . At least one eigenvector is guaranteed (because $\det(A - \lambda I) = 0$).
- Test yourself! What are the eigenvalues and eigenvectors?
	- $\circ \left[\begin{array}{cc} 1 & 0 \ 0 & 1 \end{array}\right]$ λ $=$ $1, 1$ (ie. multiplicity 2), eigenspace is \mathbb{R}^2
	- \circ $\left[\begin{smallmatrix} 0 & 0 \ 0 & 0 \end{smallmatrix} \right]$ $\lambda {\,=\,} 0, 0$, eigenspace is \mathbb{R}^2
	- \circ $\begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$ $\lambda = 2, 2$, eigenspace is $\text{span}\left\{\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \right\}$ 0 1)

Diagonalization

Diagonal matrices are very easy to work with.

Example 1. For instance, it is easy to compute their powers.

If
$$
A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix}
$$
, then $A^2 = \begin{bmatrix} 2^2 & 3^2 \\ 3^2 & 4^2 \end{bmatrix}$ and $A^{100} = \begin{bmatrix} 2^{100} & 3^{100} \\ 3^{100} & 4^{100} \end{bmatrix}$

Example 2. If $A = \begin{bmatrix} 6 & -1 \\ 2 & 3 \end{bmatrix}$, then $A^{100} = ?$

Solution.

- Characteristic polynomial: $\Big\vert$ $6 - \lambda \quad -1$ 2 $3 - \lambda$ $= ... = (\lambda - 4)(\lambda - 5)$
	- \circ $\lambda_1 = 4: \begin{bmatrix} 2 & -1 \\ 2 & 1 \end{bmatrix}$ $2 -1$ $\begin{bmatrix} \boldsymbol{v} = \boldsymbol{0} \implies \end{bmatrix}$ eigenvector $\boldsymbol{v}_1 = \begin{bmatrix} 1 \ 2 \end{bmatrix}$ 2 1 \circ $\lambda_2 = 5: \begin{bmatrix} 1 & -1 \\ 2 & 2 \end{bmatrix}$ $2 -2$ $\Big] \implies$ eigenvector $\bm{v}_2 \!=\! \left[\begin{smallmatrix} 1 \ 1 \end{smallmatrix}\right]$ 1 1
- Key observation: $A^{100}\boldsymbol{v}_1\!=\!\lambda_1^{100}\boldsymbol{v}_1$ and $A^{100}\boldsymbol{v}_2\!=\!\lambda_2^{100}\boldsymbol{v}_2$ For A^{100} , we need A^{100} $\begin{bmatrix} 1 \ 0 \end{bmatrix}$ 0 and A^{100} $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ 1 .

Armin Straub astraub@illinois.edu

•
$$
\begin{bmatrix} 1 \\ 0 \end{bmatrix} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 = -\begin{bmatrix} 1 \\ 2 \end{bmatrix} + 2\begin{bmatrix} 1 \\ 1 \end{bmatrix}
$$

\n $\implies A^{100} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = A^{100} \begin{bmatrix} -\begin{bmatrix} 1 \\ 2 \end{bmatrix} + 2\begin{bmatrix} 1 \\ 1 \end{bmatrix} = -4^{100} \begin{bmatrix} 1 \\ 2 \end{bmatrix} + 2 \cdot 5^{100} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
\n $\implies A^{100} = \begin{bmatrix} 2 \cdot 5^{100} - 4^{100} \\ 2 \cdot 5^{100} - 2 \cdot 4^{100} \end{bmatrix}^*$

• We find the second column of A^{100} likewise. Left as exercise!

The key idea of the previous example was to work with respect to a basis given by the eigenvectors.

• Put the eigenvectors $x_1, ..., x_n$ as columns into a matrix P.

$$
A\boldsymbol{x}_i = \lambda_i \boldsymbol{x}_i \implies A \begin{bmatrix} | & | & | \\ \boldsymbol{x}_1 & \cdots & \boldsymbol{x}_n \\ | & | & | \end{bmatrix} = \begin{bmatrix} | & | & | \\ \lambda_1 \boldsymbol{x}_1 & \cdots & \lambda_n \boldsymbol{x}_n \\ | & | & | \end{bmatrix}
$$

$$
= \begin{bmatrix} | & | & | \\ \boldsymbol{x}_1 & \cdots & \boldsymbol{x}_n \\ | & | & | \end{bmatrix} \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}
$$

• In summary: $AP = PD$

Suppose that \overline{A} is $n \times n$ and has independent eigenvectors $\overline{{\boldsymbol v}_1,...,{\boldsymbol v}_n}.$ Then A can be diagonalized as $A = P D P^{-1}$.

- \bullet the columns of P are the eigenvectors
- the diagonal matrix D has the eigenvalues on the diagonal

Such a diagonalization is possible if and only if A has enough eigenvectors.

Example 3.

Fibonacci numbers: $0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...$

By the way: "not a universal law but only a fascinatingly prevalent tendency" $-$ Coxeter Did you notice: $\frac{13}{8} = 1.625$, $\frac{21}{13} = 1.615$, $\frac{34}{21} = 1.619$, ... The **golden ratio** φ $=$ 1.618... Where's that coming from? By the way, this φ is the *most irrational* number (in a precise sense).

- $F_{n+1} = F_n + F_{n-1} \implies \begin{bmatrix} F_{n+1} \\ F_n \end{bmatrix}$ $\overline{F_n}$ $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} F_n \\ F_{n-1} \end{bmatrix}$ 1
- Hence: $\begin{bmatrix} F_{n+1} \\ F_{n+1} \end{bmatrix}$ $\overline{F_n}$ $\left| = \left[\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array} \right]^n \left[\begin{array}{c} F_1 \\ F_0 \end{array} \right]$ $F₀$ \mathbb{R}^n . The contract of the contract of
- But we know how to compute $\begin{bmatrix} 1 & 1 \ 1 & 0 \end{bmatrix}^n$ or $\begin{bmatrix} 1 & 1 \ 1 & 0 \end{bmatrix}^n \begin{bmatrix} 1 \ 0 \end{bmatrix}^n$ 0 !

Solution. (Exercise to fill in all details!)

- The characteristic polynomial of $A = \begin{bmatrix} 1 & 1 \ 1 & 0 \end{bmatrix}$ is $\lambda^2 \lambda 1$.
- The eigenvalues are $\lambda_1 = \frac{1+\sqrt{5}}{2}$ $\frac{1}{2} \cdot \sqrt{5} \approx 1.618$ (the golden mean!) and $\lambda_2 = \frac{1-\sqrt{5}}{2}$ $\frac{1}{2}$ \approx −0.618.
- Corresponding eigenvectors: $\boldsymbol{v}_1 = \left[\begin{array}{cc} \lambda_1 \\ 1 \end{array}\right]$ 1 $\big],\, \bm v_2 \!=\! \big[\begin{array}{c} \lambda_2 \ 1 \end{array}$ 1 1
- Write $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ 0 $= c_1 v_1 + c_1 v_2.$ (c₁ =

$$
\bullet \quad \begin{bmatrix} F_{n+1} \\ F_n \end{bmatrix} = A^n \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \lambda_1^n c_1 \mathbf{v}_1 + \lambda_2^n c_2 \mathbf{v}_2
$$

• Hence,
$$
F_n = \lambda_1^n c_1 + \lambda_2^n c_2 = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right].
$$

That's Binet's formula.

• But
$$
|\lambda_2|
$$
 < 1, and so $F_n \approx \lambda_1^n c_1 = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n$.

In fact,
$$
F_n = \text{round}\left(\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^n\right)
$$
. Don't you feel powerfull?

Practice problems

Problem 1. Find, if possible, the diagonalization of $A = \begin{bmatrix} 0 & -2 \ -4 & 2 \end{bmatrix}$.

 F_1 F_0

1

 $\frac{1}{\sqrt{5}}, c_2 = -\frac{1}{\sqrt{5}}$

 $\frac{1}{\sqrt{5}}$

 $=$ $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ 0 1