
Review for Midterm 3

• Bring a number 2 pencil to the exam!

• Extra help session: today and tomorrow, 4–7pm, in AH 441

• Room assignments for Thursday, Nov 20, 7-8:15pm:

◦ if your last name starts with A-E: 213 Greg Hall

◦ if your last name starts with F-L: 100 Greg Hall

◦ if your last name starts with M-Sh: 66 Library

◦ if your last name starts with Si-Z: 103 Mumford Hall

• Big topics:

◦ Orthogonal projections

◦ Least squares

◦ Gram–Schmidt

◦ Determinants

◦ Eigenvalues and eigenvectors

Orthogonal projections

• If v1,
 , vn is an orthogonal basis of V , and x is in V , then

x= c1v1+
 + cnvn with cj=
〈x,vj〉

〈vj ,vj〉
.

• Suppose that V is a subspace of W , and x is in W , then the orthogonal projection
of x onto V is given by

x̂= c1v1+
 + cnvn with cj=
〈x,vj〉

〈vj ,vj〉
.

◦ The basis v1,
 ,vn has to be orthogonal for this formula!!

◦ This decomposes x= x̂
�

in V

+ x⊥
�

in V ⊥

, where the error x⊥ is orthogonal to V . (this

decomposition is unique)

v1

v2

x

x̂

x
⊥
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◦ The corresponding projection matrix represents x � x̂ with respect to the
standard basis.

Example 1.

(a) What is the orthogonal projection of





1
1
0



 onto span

{





1
0
0



,





0
1
0





}

?

Solution: The projection is





1
1
0



.

(b) What is the orthogonal projection of





1
1
0



 onto span

{





1
−1
0



,





1
−1
1





}

?

Solution: The projection is





0
0
0



.

Wrong approach!!
〈




1

1

0



,





1

−1

0



〉

〈




1

−1

0



,





1

−1

0



〉





1
−1
0



+
〈




1

1

0



,





1

−1

1



〉

〈




1

−1

1



,





1

−1

1



〉





1
−1
1



=





0
0
0





This is wrong because





1

−1

0



,





1

−1

1



 are not orthogonal. (See next example!)

(c) What is the orthogonal projection of





1
−1
0



 onto span

{





1
−1
0



,





1
−1
1





}

?

Solution: The projection is





1
−1
0



.

Wrong!!
〈




1

−1

0



,





1

−1

0



〉

〈




1

−1

0



,





1

−1

0



〉





1
−1
0



+
〈




1

−1

0



,





1

−1

1



〉

〈




1

−1

1



,





1

−1

1



〉





1
−1
1



=





1
−1
0



+
2

3





1
−1
1





Corrected :





1
−1
0



,





1
−1
1





�





1
−1
0



,





0
0
1



 (for instance, using Gram–Schm idt)

〈




1

−1

0



,





1

−1

0



〉

〈




1

−1

0



,





1

−1

0



〉





1
−1
0



+
〈




1

−1

0



,





0

0

1



〉

〈




1

−1

1



,





0

0

1



〉





0
0
1



=





1
−1
0



+0





0
0
1





(d) What is the projection matrix corresponding to orthogonal projection onto

span

{





0
1
0



,





1
1
0





}

?

Solution: The projection matrix is





1 0 0
0 1 0
0 0 0



.

What would Gram–Schmidt do?





0
1
0



,





1
1
0





�





0
1
0



,





1
0
0





(e) What is the orthogonal projection of





1
1
1



 onto span

{





0
1
0



,





1
1
0





}

?
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Solution: The projection is





1 0 0
0 1 0
0 0 0









1
1
1



=





1
1
0



.

• The space of all nice functions with period 2π has the natural inner product 〈f ,

g〉=
∫

0

2π
f(x)g(x)dx. [in R

n: 〈x, y〉= x1y1+
 + xnyn]

• The functions

1, cos (x), sin (x), cos (2x), sin (2x),


are an orthogonal basis for this space.

• Expanding a function f(x) in this basis produces its Fourier series

f(x)= a0+ a1cos(x) + b1sin(x)+ a2cos(2x)+ b2sin(2x)+�

Example 2. How can we compute b2?

Solution.

b2sin(2x) is the orthogonal projection of f onto the span of sin (2x).

Hence:

b2 =
〈f(x), sin (2x)〉

〈sin (2x), sin (2x)〉
=

∫

0

2π
f(x)sin(2x)dx

∫

0

2π
sin2 (2x)dx

Least squares

• x̂ is a least squares solution of the system Ax= b.

� x̂ is such that Ax̂ − b is as small as possible.

� ATAx̂=ATb (the normal equations)

Example 3. Find the least squares line for the data points (2, 1), (5, 2), (7, 3), (8, 3).

Solution.

Looking for β1, β2 such that the line y= β1+ β2x best fits the data.

The equations yi= β1+ β2xi in matrix form:








1 x1

1 x2

1 x3

1 x4









design matrix X

[

β1

β2

]

=









y1
y2
y3
y4









observation
vector y
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Here, we need to find a least squares solution to








1 2
1 5
1 7
1 8









[

β1

β2

]

=









1
2
3
3









.

XTX =

[

1 1 1 1
2 5 7 8

]









1 2
1 5
1 7
1 8









=

[

4 22

22 142

]

XT
y=

[

1 1 1 1
2 5 7 8

]









1
2
3
3









=

[

9
57

]

Solving
[

4 22

22 142

]

β̂ =
[

9
57

]

, we find
[

β1

β2

]

=
[

2/7
5/14

]

.

Gram–Schmidt

Recipe. (Gram–Schmidt orthonormalization)

Given a basis a1,
 ,an, produce an orthonormal basis q1,
 , qn.

b1=a1, q1=
b1

‖b1‖

b2=a2− 〈a2, q1〉q1, q2=
b2

‖b2‖

b3=a3−〈a3, q1〉q1− 〈a3, q2〉q2, q3=
b3

‖b3‖


• An orthogonal matrix is a square matrix Q with orthonormal columns.

Equivalently, QTQ= I (also true for non-square matrices).

• Apply Gram–Schmidt to the (independent) columns of A to obtain the QR decom-
position A=QR.

◦ Q has orthonormal columns (the output vectors of Gram–Schmidt)

◦ R=QTA is upper triangular
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Example 4. Find the QR decomposition of A=





1 1
2 0
0 1



.

Solution. We apply Gram–Schmidt to the columns of A:

1

5
√





1
2
0



= q1





1
0
1



− 〈





1
0
1



, q1〉q1=





1
0
1



−
1

5
√ 1

5
√





1
2
0



=





4/5
−2/5

1



,
1

9/5
√





4/5
−2/5

1



= q2

Hence: Q= [ q1 q2 ] =













1

5
√ 4

45
√

2

5
√ −

2

45
√

0
5

45
√













And: R=QTA=







1

5
√ 2

5
√ 0

4

45
√ −

2

45
√ 5

45
√











1 1
2 0
0 1



=







5

5
√ 1

5
√

0
9

45
√







Determinants

• A is invertible � det (A)� 0

• det (AB) = det (A)det(B)

• det (A−1)=
1

det (A)

• det (AT)= det (A)

• The determinant is characterized by:

◦ the normalization det I =1,

◦ and how it is affected by elementary row operations:

− (replacement) Add one row to a multiple of another row.

Does not change the determinant.

− (interchange) Interchange two rows.

Reverses the sign of the determinant.

− (scaling) Multiply all entries in a row by s.

Multiplies the determinant by s.
∣

∣

∣

∣

∣

∣

∣

∣

1 2 3 4
0 2 1 5
0 0 2 1
0 0 3 5

∣

∣

∣

∣

∣

∣

∣

∣

@

R4→R4− 3

2
R3

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 2 3 4
0 2 1 5
0 0 2 1

0 0 0
7

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

=1 · 2 · 2 ·
7

2
= 14
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• Cofactor expansion is another way to compute determinants.
∣

∣

∣

∣

∣

∣

1 2 0

3 −1 2

2 0 1

∣

∣

∣

∣

∣

∣

=−2 ·

∣

∣

∣

∣

∣

∣

−

3 2

2 1

∣

∣

∣

∣

∣

∣

+(−1) ·

∣

∣

∣

∣

∣

∣

1 0

+

2 1

∣

∣

∣

∣

∣

∣

− 0 ·

∣

∣

∣

∣

∣

∣

1 0

3 2

−

∣

∣

∣

∣

∣

∣

= − 2 · (−1)+ (−1) · 1− 0= 1

Example 5. What is

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 4
−1 2 2 5
0 3 3 1
2 0 0 5

∣

∣

∣

∣

∣

∣

∣

∣

?

Solution. The determinant is 0 because the matrix is not invertible (second and third
column are the same).

Eigenvalues and eigenvectors

• If Ax= λx, then x is an eigenvector of A with eigenvalue λ.

• λ is an eigenvalue of A � det (A− λI)

characteristic polynomial

=0.

Why? Because Ax=λx � (A−λI)x=0.

• The eigenspace of λ is Nul(A−λI).

It consists of all eigenvectors (plus 0) with eigenvalue λ.

• Eigenvectors x1,
 ,xm of A corresponding to different eigenvalues are independent.

• Useful for checking: sum of eigenvalues = sum of diagonal entries
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