Review for Midterm 3

- Bring a number 2 pencil to the exam!
- Extra help session: today and tomorrow, 4-7pm, in AH 441
- Room assignments for Thursday, Nov 20, 7-8:15pm:
 - if your last name starts with A-E: 213 Greg Hall
 - if your last name starts with F-L: 100 Greg Hall
 - if your last name starts with M-Sh: 66 Library
 - o if your last name starts with Si-Z: 103 Mumford Hall
- Big topics:
 - Orthogonal projections
 - Least squares
 - Gram–Schmidt
 - Determinants
 - Eigenvalues and eigenvectors

Orthogonal projections

• If $v_1, ..., v_n$ is an **orthogonal basis** of V, and x is in V, then

$$oldsymbol{x} = c_1 oldsymbol{v}_1 + \ldots + c_n oldsymbol{v}_n$$
 with $c_j = rac{\langle oldsymbol{x}, oldsymbol{v}_j
angle}{\langle oldsymbol{v}_j, oldsymbol{v}_j
angle}.$

Suppose that V is a subspace of W, and x is in W, then the orthogonal projection
of x onto V is given by

$$\hat{\boldsymbol{x}} = c_1 \boldsymbol{v}_1 + \ldots + c_n \boldsymbol{v}_n$$
 with $c_j = \frac{\langle \boldsymbol{x}, \boldsymbol{v}_j \rangle}{\langle \boldsymbol{v}_j, \boldsymbol{v}_j \rangle}.$

- The basis $v_1, ..., v_n$ has to be orthogonal for this formula!!
- This decomposes $x = \hat{x}_{\text{in } V} + \hat{x}_{\text{in } V^{\perp}}^{\perp}$, where the error x^{\perp} is orthogonal to V. (this decomposition is unique)

Armin Straub astraub@illinois.edu • The corresponding **projection matrix** represents $x \mapsto \hat{x}$ with respect to the standard basis.

Example 1.

(a) What is the orthogonal projection of $\begin{bmatrix} 1\\ 1\\ 0 \end{bmatrix}$ onto span $\left\{ \begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}, \begin{bmatrix} 0\\ 1\\ 0 \end{bmatrix} \right\}$? Solution: The projection is $\begin{bmatrix} 1\\1\\0 \end{bmatrix}$. (b) What is the orthogonal projection of $\begin{bmatrix} 1\\ 1\\ 0 \end{bmatrix}$ onto span $\left\{ \begin{bmatrix} 1\\ -1\\ 1 \end{bmatrix}, \begin{bmatrix} 1\\ -1\\ 1 \end{bmatrix} \right\}$? Solution: The projection is $\begin{bmatrix} 0\\0\\0 \end{bmatrix}$. Wrong approach!! $\frac{\langle \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} -1\\0 \end{bmatrix} \rangle}{\langle \begin{bmatrix} 1\\-1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\0 \end{bmatrix}} \begin{bmatrix} 1\\-1\\0 \end{bmatrix} + \frac{\langle \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} -1\\1\\1 \end{bmatrix} \rangle}{\langle \begin{bmatrix} 1\\-1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\1 \end{bmatrix}} = \begin{bmatrix} 0\\0\\0 \end{bmatrix}$ This is wrong because $\begin{bmatrix} 1\\ -1\\ 0 \end{bmatrix}, \begin{bmatrix} 1\\ -1\\ 1 \end{bmatrix}$ are not orthogonal. (See next example!) (c) What is the orthogonal projection of $\begin{bmatrix} 1\\ -1\\ 0 \end{bmatrix}$ onto span $\left\{ \begin{bmatrix} 1\\ -1\\ 0 \end{bmatrix}, \begin{bmatrix} 1\\ -1\\ 1 \end{bmatrix} \right\}$? Solution: The projection is $\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$. $Wrong!! \frac{\langle \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, \begin{bmatrix} 1\\-1\\0 \end{bmatrix} \rangle}{\langle \begin{bmatrix} 1\\-1\\-1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\0 \end{bmatrix}} + \frac{\langle \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, \begin{bmatrix} 1\\-1\\1 \end{bmatrix} \rangle}{\langle \begin{bmatrix} 1\\-1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\1 \end{bmatrix}} = \begin{bmatrix} 1\\-1\\0 \end{bmatrix} + \frac{2}{3} \begin{bmatrix} 1\\-1\\1 \end{bmatrix}$ Corrected: $\begin{vmatrix} 1 \\ -1 \\ 0 \end{vmatrix}$, $\begin{vmatrix} 1 \\ -1 \\ -1 \end{vmatrix} \Longrightarrow \begin{vmatrix} 1 \\ -1 \\ 0 \end{vmatrix}$, $\begin{vmatrix} 0 \\ 0 \\ 1 \end{vmatrix}$ (for instance, using Gram-Schmidt) $\frac{\langle \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}}{\langle \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} + \frac{\langle \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} + 0\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ (d) What is the projection matrix corresponding to orthogonal projection onto $\operatorname{span}\left\{ \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix} \right\}?$

 $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ Solution: The projection matrix is $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ What would Gram-Schmidt do? $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \Longrightarrow \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ (e) What is the orthogonal projection of $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ onto span $\left\{ \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \right\}$?

Solution: The projection is $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$.

- The space of all nice functions with period 2π has the natural inner product $\langle f, g \rangle = \int_{0}^{2\pi} f(x)g(x)dx$. [in $\mathbb{R}^{n}: \langle \boldsymbol{x}, \boldsymbol{y} \rangle = x_{1}y_{1} + ... + x_{n}y_{n}$]
- The functions

 $1, \cos(x), \sin(x), \cos(2x), \sin(2x), \dots$

are an orthogonal basis for this space.

• Expanding a function f(x) in this basis produces its Fourier series

 $f(x) = a_0 + a_1 \cos(x) + b_1 \sin(x) + a_2 \cos(2x) + b_2 \sin(2x) + \cdots$

Example 2. How can we compute b_2 ?

Solution.

 $b_2 \sin(2x)$ is the orthogonal projection of f onto the span of $\sin(2x)$. Hence:

$$b_2 = \frac{\langle f(x), \sin(2x) \rangle}{\langle \sin(2x), \sin(2x) \rangle} = \frac{\int_0^{2\pi} f(x) \sin(2x) dx}{\int_0^{2\pi} \sin^2(2x) dx}$$

Least squares

• \hat{x} is a least squares solution of the system Ax = b.

 $\iff \hat{x}$ is such that $A\hat{x} - b$ is as small as possible.

 $\iff A^T A \hat{x} = A^T b$ (the normal equations)

Example 3. Find the least squares line for the data points (2,1), (5,2), (7,3), (8,3).

Solution.

Looking for β_1, β_2 such that the line $y = \beta_1 + \beta_2 x$ best fits the data.

The equations $y_i = \beta_1 + \beta_2 x_i$ in matrix form:

Here, we need to find a least squares solution to

$$\begin{bmatrix} 1 & 2 \\ 1 & 5 \\ 1 & 7 \\ 1 & 8 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 3 \end{bmatrix}.$$
$$X^T X = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 5 & 7 & 8 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 5 \\ 1 & 7 \\ 1 & 8 \end{bmatrix} = \begin{bmatrix} 4 & 22 \\ 22 & 142 \end{bmatrix}$$
$$X^T y = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 5 & 7 & 8 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 3 \end{bmatrix} = \begin{bmatrix} 9 \\ 57 \end{bmatrix}$$

Solving $\begin{bmatrix} 4 & 22 \\ 22 & 142 \end{bmatrix} \hat{\beta} = \begin{bmatrix} 9 \\ 57 \end{bmatrix}$, we find $\begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} 2/7 \\ 5/14 \end{bmatrix}$.

Gram-Schmidt

Recipe. (Gram-Schmidt orthonormalization) Given a basis $a_1, ..., a_n$, produce an orthonormal basis $q_1, ..., q_n$. $b_1 = a_1, \qquad q_1 = \frac{b_1}{\|b_1\|}$ $b_2 = a_2 - \langle a_2, q_1 \rangle q_1, \qquad q_2 = \frac{b_2}{\|b_2\|}$ $b_3 = a_3 - \langle a_3, q_1 \rangle q_1 - \langle a_3, q_2 \rangle q_2, \qquad q_3 = \frac{b_3}{\|b_3\|}$:

- An orthogonal matrix is a square matrix Q with orthonormal columns. Equivalently, $Q^T Q = I$ (also true for non-square matrices).
- Apply Gram–Schmidt to the (independent) columns of A to obtain the **QR decomposition** A = QR.
 - \circ Q has orthonormal columns (the output vectors of Gram-Schmidt)
 - $\circ \quad R \,{=}\, Q^T\!A \,\, {\rm is \,\, upper \,\, triangular}$

Example 4. Find the QR decomposition of $A = \begin{bmatrix} 1 & 1 \\ 2 & 0 \\ 0 & 1 \end{bmatrix}$.

Solution. We apply Gram–Schmidt to the columns of *A*:

$$\frac{1}{\sqrt{5}} \begin{bmatrix} 1\\2\\0 \end{bmatrix} = q_1$$

$$\begin{bmatrix} 1\\0\\1 \end{bmatrix} - \langle \begin{bmatrix} 1\\0\\1 \end{bmatrix}, q_1 \rangle q_1 = \begin{bmatrix} 1\\0\\1 \end{bmatrix} - \frac{1}{\sqrt{5}} \frac{1}{\sqrt{5}} \begin{bmatrix} 1\\2\\0 \end{bmatrix} = \begin{bmatrix} 4/5\\-2/5\\1 \end{bmatrix}, \quad \frac{1}{\sqrt{9/5}} \begin{bmatrix} 4/5\\-2/5\\1 \end{bmatrix} = q_2$$
Hence: $Q = \begin{bmatrix} q_1 & q_2 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{4}{\sqrt{45}}\\ \frac{2}{\sqrt{5}} & -\frac{2}{\sqrt{45}}\\ 0 & \frac{5}{\sqrt{45}} \end{bmatrix}$
And: $R = Q^T A = \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} & 0\\ \frac{4}{\sqrt{45}} & -\frac{2}{\sqrt{45}} & \frac{5}{\sqrt{45}} \end{bmatrix} \begin{bmatrix} 1 & 1\\2 & 0\\0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{5}{\sqrt{5}} & \frac{1}{\sqrt{5}}\\ 0 & \frac{9}{\sqrt{45}} \end{bmatrix}$

Determinants

- A is invertible $\iff \det(A) \neq 0$
- $\det(AB) = \det(A)\det(B)$
- $\det(A^{-1}) = \frac{1}{\det(A)}$
- $\det(A^T) = \det(A)$
- The **determinant** is characterized by:
 - the normalization $\det I = 1$,
 - and how it is affected by elementary row operations:
 - (replacement) Add one row to a multiple of another row.
 Does not change the determinant.
 - (interchange) Interchange two rows.
 Reverses the sign of the determinant.
 - (scaling) Multiply all entries in a row by s.
 Multiplies the determinant by s.

 $\begin{vmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 1 & 5 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 3 & 5 \end{vmatrix} \xrightarrow{R4 \to R4 - \frac{3}{2}R3} \begin{vmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 1 & 5 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & \frac{7}{2} \end{vmatrix} = 1 \cdot 2 \cdot 2 \cdot \frac{7}{2} = 14$

Cofactor expansion is another way to compute determinants.

 $\begin{vmatrix} 1 & 2 & 0 \\ 3 & -1 & 2 \\ 2 & 0 & 1 \end{vmatrix} = -2 \cdot \begin{vmatrix} -1 & -1 & -1 \\ 3 & 2 & 1 \\ 2 & 1 \end{vmatrix} + (-1) \cdot \begin{vmatrix} 1 & 0 & 0 \\ -1 & +1 \\ 2 & 1 \end{vmatrix} - 0 \cdot \begin{vmatrix} 1 & 0 & 0 \\ 3 & 2 \\ -1 & -1 \end{vmatrix}$ $= -2 \cdot (-1) + (-1) \cdot 1 - 0 = 1$

Example 5. What is $\begin{vmatrix} 1 & 1 & 1 & 4 \\ -1 & 2 & 2 & 5 \\ 0 & 3 & 3 & 1 \\ 2 & 0 & 0 & 5 \end{vmatrix}$?

Solution. The determinant is 0 because the matrix is not invertible (second and third column are the same).

Eigenvalues and eigenvectors

- If $Ax = \lambda x$, then x is an eigenvector of A with eigenvalue λ .
- λ is an eigenvalue of $A \iff \det(A \lambda I) = 0$. characteristic polynomial

Why? Because $A\boldsymbol{x} = \lambda \boldsymbol{x} \iff (A - \lambda I)\boldsymbol{x} = \boldsymbol{0}$.

• The eigenspace of λ is $Nul(A - \lambda I)$.

It consists of all eigenvectors (plus **0**) with eigenvalue λ .

- Eigenvectors x_1, \ldots, x_m of A corresponding to different eigenvalues are independent. ۲
- Useful for checking: sum of eigenvalues = sum of diagonal entries ullet