Review

• We model a surfer randomly clicking webpages.

Let $PR_n(A)$ be the probability that he is at A (after *n* steps). $PR_n(A) = PR_{n-1}(B) \cdot \frac{1}{2}$ $\frac{1}{2} + PR_{n-1}(C) \cdot \frac{1}{1}$ $\frac{1}{1} + PR_{n-1}(D) \cdot \frac{0}{1}$ 1 Т \parallel $PR_n(A)$ $PR_n(B)$ $PR_n(C)$ $PR_n(D)$ 1 \vert = Г $0 \frac{1}{2}$ $rac{1}{2}$ 1 0 1 $rac{1}{3}$ 0 0 0 1 $rac{1}{3}$ 0 0 1 1 3 1 $rac{1}{2}$ 0 0 1 $\overline{-T}$ IГ $PR_{n-1}(A)$ $PR_{n-1}(B)$ $\mathrm{PR}_{n-1}(C)$ $PR_{n-1}(D)$ 1 $\begin{array}{c} \n\downarrow \\ \n\downarrow \\ \n\downarrow \n\end{array}$

• The transition matrix T is a **Markov matrix**.

Its columns add to 1 and it has no negative entries.

• The Page rank of page A is $PR(A) = PR_{\infty}(A)$. (assuming the limit exists)

It is the probability that the surfer is at page A after n steps (with $n \to \infty$).

• The PageRank vector Г \parallel $PR(A)$ $PR(B)$ $\overline{\mathrm{PR}(C)}$ $\overline{\text{PR}(D)}$ 1 $\overline{}$ satisfies $\sqrt{ }$ \parallel $PR(A)$ $PR(B)$ $\overline{\mathrm{PR}(C)}$ $\overline{\mathrm{PR}(D)}$ 1 \vert = T Г Ί $PR(A)$ $PR(B)$ $\overline{\mathrm{PR}(C)}$ $\overline{\text{PR}(D)}$ 1 \mathcal{L} .

It is an eigenvector of the transition matrix T with eigenvalue 1.

• Г $-1 \frac{1}{2}$ $\frac{1}{2}$ 1 0 1 $\frac{1}{3}$ -1 0 0 1 $\frac{1}{3}$ 0 -1 1 $\frac{1}{2}$ $\frac{1}{2}$ 0 -1 3 2 1 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \end{array}$ R RREF $\sqrt{ }$ $1 \t0 \t0 \t-2$ 0 1 0 $-\frac{2}{3}$ 3 0 0 1 $-\frac{5}{3}$ 3 0 0 0 0 1 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \end{array} \end{array}$ \implies eigenspace of $\lambda\!=\!1$ spanned by Г $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \end{array}$ $\frac{2}{2}$ 3 5 3 1 T $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \end{array}$ Г \mathbf{I} $PR(A)$ $PR(B)$ $\overline{\mathrm{PR}(C)}$ $PR(D)$ 1 $= \frac{3}{16}$ 16 $\sqrt{ }$ $\overline{}$ $\frac{2}{2}$ 3 5 3 1 1 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \end{array}$ = Г \parallel 0.375 0.125 0.313 0.188 1 \parallel This the PageRank vector.

• The corresponding ranking of the webpages is A, C, D, B .

Remark 1. In practical situations, the system might be too large for finding the eigenvector by elimination.

• Google reports having met about 60 trillion webpages

Google's search index is over 100,000,000 gigabytes Number of Google's servers secret; about 2,500,000 More than 1,000,000,000 websites (i.e. hostnames; about 75% not active)

• Thus we have a gigantic but very sparse matrix.

An alternative to elimination is the power method:

If \overline{T} is an (acyclic and irreducible) Markov matrix, then for any $\overline{\bm{v}_0}$ the vectors $\overline{T^nv_0}$ converge to an eigenvector with eigenvalue 1.

Note that the ranking of the webpages is already A, C, D, B if we stop here.

Remark 2.

- If all entries of T are positive, then the power method is guaranteed to work.
- In the context of PageRank, we can make sure that this is the case, by replacing T with

Just to make sure: still a Markov matrix, now with positive entries Google used to use $p = 0.15$.

• Why does $T^n v_0$ converge to an eigenvector with eigenvalue 1?

Under the assumptions on T, its other eigenvalues λ satisfy $|\lambda|$ < 1. Now, think in terms of a basis $\boldsymbol{x}_1,...,\boldsymbol{x}_n$ of eigenvectors: $T^m(c_1\boldsymbol{x}_1+...+c_n\boldsymbol{x}_n)=c_1\lambda_1^m\boldsymbol{x}_1+...+c_n\lambda_n^m\boldsymbol{x}_n$

As m increases, the terms with λ_i^m for $\lambda_i{\neq}1$ go to zero, and what is left over is an eigenvector with eigenvalue 1.

Linear differential equations

Example 3. Which functions $y(t)$ satisfy the **differential equation** $y' = y$?

Solution: $y(t)=e^t$ and, more generally, $y(t)=Ce^t$

. (And nothing else.)

Recall from Calculus the Taylor series $e^t = 1 + t + \frac{t^2}{2!} + \frac{t^3}{3!} + ...$

Example 4. The differential equation $y' = ay$ with **initial condition** $y(0) = C$ is solved by $y(t) = Ce^{at}$. . (T his solution is unique.)

Why? Because $y'(t) = aCe^{at} = ay(t)$ and $y(0) = C$.

Example 5. Our goal is to solve (systems of) differential equations like:

In matrix form:

$$
\mathbf{y}' = \begin{bmatrix} 2 & 0 & 0 \\ -1 & 3 & 1 \\ -1 & 1 & 3 \end{bmatrix} \mathbf{y}, \quad \mathbf{y}(0) = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}
$$

Key idea: to solve $\bm{y}'\!=\!A\bm{y}$, introduce $e^{A\,t}$

Review of diagonalization

- If $Ax = \lambda x$, then x is an eigenvector of A with eigenvalue λ .
- Put the eigenvectors $x_1, ..., x_n$ as columns into a matrix P .

$$
A\boldsymbol{x}_i = \lambda_i \boldsymbol{x}_i \implies A \begin{bmatrix} | & & | \\ \boldsymbol{x}_1 & \cdots & \boldsymbol{x}_n \\ | & & | \end{bmatrix} = \begin{bmatrix} | & & | \\ \lambda_1 \boldsymbol{x}_1 & \cdots & \lambda_n \boldsymbol{x}_n \\ | & & | \end{bmatrix}
$$

$$
= \begin{bmatrix} | & & | \\ \boldsymbol{x}_1 & \cdots & \boldsymbol{x}_n \\ | & & | \end{bmatrix} \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}
$$

• In summary: $AP = PD$

Let A be $n \times n$ with independent eigenvectors $\boldsymbol{x}_1,...,\boldsymbol{x}_n$.

Then A can be **diagonalized** as $A = P D P^{-1}$.

- \bullet the columns of P are the eigenvectors
- the diagonal matrix D has the eigenvalues on the diagonal

Example 6. Diagonalize the following matrix, if possible.

$$
A = \left[\begin{array}{rrr} 2 & 0 & 0 \\ -1 & 3 & 1 \\ -1 & 1 & 3 \end{array} \right]
$$

Solution.

•
$$
A
$$
 has eigenvalues 2 and 4.

 $\circ \lambda = 2:$ $\overline{1}$ 0 0 0 −1 1 1 −1 1 1 $\Big] \Longrightarrow$ eigenspace $\operatorname{span} \Big\{ \Big[$ 1 1 0 1 \vert , Г $\overline{1}$ 1 0 1 T \mathbb{I}) $\circ \lambda = 4:$ $\overline{1}$ -2 0 0 -1 -1 1 -1 1 -1 $\Big] \Longrightarrow$ eigenspace $\operatorname{span} \Bigl\{ \Big[$ 0 1 1 1 \mathbf{I}) \bullet $P =$ \mathbf{I} 1 1 0 1 0 1 0 1 1 1 and $D =$ Г $\overline{1}$ 2 2 4 1 \mathbf{I}

(We did that in an earlier class!)

 $A = PDP^{-1}$

For many applications, it is not needed to compute P^{-1} explicitly.

We can check this by verifying $AP = PD$:

$$
\begin{bmatrix} 2 & 0 & 0 \ -1 & 3 & 1 \ -1 & 1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \ 1 & 0 & 1 \ 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \ 1 & 0 & 1 \ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \\ 4 \end{bmatrix}
$$