Review for the final exam

- Bring a number 2 pencil to the exam!
- Room assignments for Friday, Dec 12, 7-10pm:
 - if your last name starts with A-J: 114 DKH
 - if your last name starts with K-Z: Foellinger Auditorium

What we have learned

• Basic notions of linear algebra:

Make sure that you can say, precisely, what each notion means.

- vector spaces and subspaces
- linear independence
- basis and dimension
- **linear transformations** (and matrices representing them)
- o orthogonal vectors, spaces, matrices, and projections
- the four fundamental subspaces associated with a matrix
- Technical skills:
 - matrix multiplication
 - Gaussian elimination and solving linear systems
 - LU decomposition
 - computing matrix inverses
 - Gram–Schmidt and QR decomposition
 - finding least squares solutions
 - determine (orthonormal) bases of spaces and their orthogonal complements
 - computing determinants
 - o eigenvalues, eigenvectors and diagonalization
- Applications
 - finite differences (not on the exam)
 - directed graphs (both null spaces of edge-node incidence matrix)
 - Fourier series
 - linear regression (least squares lines)
 - difference equations (steady state, PageRank)
 - systems of differential equations

Practice problems

Example 1. Are the following vector spaces?

- (a) The set of all functions $f: \mathbb{R} \to \mathbb{R}$ with f''(0) = 7. No. Missing the zero function.
- (b) The set of all orthogonal 2×2 matrices.

No. Missing the zero matrix.

(c) The set of all vectors $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ such that $x_1 + x_2 = 0$.

Yes. This is $Nul([1 \ 1 \])$.

(d) The set of all eigenvectors of a matrix A.

No. Take, for instance, $A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$.

(e) The set of solutions y(x) of y'' + 7y' - y = 0.

Yes. For instance, if $y_1'' + 7y_1' - y_1 = 0$ and $y_2'' + 7y_2' - y_2 = 0$, then $(y_1 + y_2)'' + 7(y_1 + y_2)' - (y_1 + y_2) = 0$.

Example 2. Decide if each criterion is true or false.

An $n \times n$ matrix A is invertible if and only if...

(a) the columns of A are independent.

True.

(b) 0 is not an eigenvalue of A.

True.

(c) A has no zero column.

False. Take, for instance, $A = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}$.

(d) A has no free variables.

True.

(e) A is row equivalent to I.

True.

(f) A has n independent eigenvectors.

False. Take, for instance, $A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$.

Armin Straub astraub@illinois.edu **Example 3.** Decide if each criterion is true or false.

The linear system Ax = b is consistent if and only if...

- (a) an echelon form of $\begin{bmatrix} A & b \end{bmatrix}$ has no row of the form $\begin{bmatrix} 0 & \cdots & 0 & \beta \end{bmatrix}$ with $\beta \neq 0$. True.
- (b) **b** is in $\operatorname{Col}(A^T)$.

False. (**b** is in Col(A) would be true.)

(c) A has no free variables.

```
False. Take, for instance, \begin{bmatrix} 1\\1 \end{bmatrix} \boldsymbol{x} = \begin{bmatrix} 1\\0 \end{bmatrix}.
```

(d) **b** is orthogonal to $\operatorname{Nul}(A^T)$.

True.

Example 4. What is	$ \begin{array}{c} 1 \\ 2 \\ 0 \\ 2 \end{array} $	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 7 \end{array} $	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 0 \end{array} $	4 8 1 5	?
	2	-7	0	5	

Solution. The determinant is 0 because the matrix is not invertible (second row is a multiple of the first).

Example 5. Solve the initial value problem

$$\boldsymbol{y}' = \begin{bmatrix} 0 & -2 \\ -4 & 2 \end{bmatrix} \boldsymbol{y}, \qquad \boldsymbol{y}(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

Solution. The solution to y' = Ay, $y(0) = y_0$ is $y(t) = e^{At}y_0$.

- Diagonalize $A = \begin{bmatrix} 0 & -2 \\ -4 & 2 \end{bmatrix}$:
 - $\circ \begin{vmatrix} -\lambda & -2 \\ -4 & 2-\lambda \end{vmatrix} = \lambda^2 2\lambda 8, \text{ so the eigenvalues are } -2, 4 \\ \circ & \lambda = 4 \text{ has eigenspace } \operatorname{Nul}\left(\begin{bmatrix} -4 & -2 \\ -4 & -2 \end{bmatrix} \right) = \operatorname{span}\left\{ \begin{bmatrix} 1 \\ -2 \end{bmatrix} \right\}$
 - $\lambda = -2$ has eigenspace $\operatorname{Nul}\left(\begin{bmatrix} 2 & -2 \\ -4 & 4 \end{bmatrix}\right) = \operatorname{span}\left\{\begin{bmatrix} 1 \\ 1 \end{bmatrix}\right\}$
 - Hence, $A = PDP^{-1}$ with $P = \begin{bmatrix} 1 & 1 \\ -2 & 1 \end{bmatrix}$ and $D = \begin{bmatrix} 4 & 0 \\ 0 & -2 \end{bmatrix}$.
- Compute the solution $\boldsymbol{y} = e^{At} \boldsymbol{y}_0$:

$$\begin{aligned} \boldsymbol{y} &= Pe^{Dt}P^{-1}\boldsymbol{y}_{0} \\ &= \begin{bmatrix} 1 & 1 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} e^{4t} & 0 \\ 0 & e^{-2t} \end{bmatrix} \frac{1}{3} \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \\ &= \frac{1}{3} \begin{bmatrix} 1 & 1 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} e^{4t} & 0 \\ 0 & e^{-2t} \end{bmatrix} \begin{bmatrix} 0 \\ 3 \end{bmatrix} \\ &= \frac{1}{3} \begin{bmatrix} 1 & 1 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 3e^{-2t} \end{bmatrix} \\ &= \begin{bmatrix} e^{-2t} \\ e^{-2t} \end{bmatrix} \end{aligned}$$

Example 6. Determine a basis for Nul(A) and $Nul(A^T)$, where A is the edge-node incidence matrix of the directed graph below.

Solution.

• Basis for Nul(A) from connected subgraphs.

_

For each connected subgraph, get a basis vector \boldsymbol{x} that assigns 1 to all nodes in that subgraph, and 0 to all other nodes.

• Basis for $Nul(A^T)$ from (independent) loops.

For each (independent) loop, get a basis vector y that assigns 1 and -1 (depending on direction) to the edges in that loop, and 0 to all other edges.

Basis for Nul(
$$A^T$$
): $\begin{bmatrix} 1 \\ -1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ -1 \\ -1 \\ 1 \end{bmatrix}$

Example 7. Let $A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ -2 & 3 & 1 \end{bmatrix}$.

- (a) Determine the LU decomposition of A.
- (b) What is det(A)?

Solution.

(a)
$$\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ -2 & 3 & 1 \end{bmatrix} \xrightarrow{R_2 \to R_2 - R_1}_{R_3 \to R_3 + 2R_1} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 3 & 3 \end{bmatrix}$$

 $R_3 \to R_3 - 3R_1 \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 6 \end{bmatrix} = U$
The LU decomposition is $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ -2 & 3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 6 \end{bmatrix}$.

$$L = \begin{bmatrix} 1 \\ 1 & 1 \\ -2 & * & 1 \end{bmatrix}$$
$$L = \begin{bmatrix} 1 \\ 1 & 1 \\ -2 & 3 & 1 \end{bmatrix}$$

In the exam: check!!!

Example 8. Suppose that, with respect to the bases

$$\begin{bmatrix} 0\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1 \end{bmatrix} \text{ of } \mathbb{R}^2, \text{ and } \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \text{ of } \mathbb{R}^3,$$

the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ is represented by $\begin{bmatrix} 1 & 0 & 2 \\ 3 & -1 & 1 \end{bmatrix}$.

(a) What exactly does the matrix encode?

(b) What is $T\left(\begin{bmatrix} 1\\ 1\\ 2 \end{bmatrix} \right)$?

Solution.

(a)
$$T\left(\begin{bmatrix} 1\\1\\0\end{bmatrix}\right) = 1\begin{bmatrix} 0\\1\end{bmatrix} + 3\begin{bmatrix} 1\\-1\end{bmatrix} = \begin{bmatrix} 3\\-2\end{bmatrix}$$

 $T\left(\begin{bmatrix} 1\\0\\0\end{bmatrix}\right) = 0\begin{bmatrix} 0\\1\end{bmatrix} - 1\begin{bmatrix} 1\\-1\end{bmatrix} = \begin{bmatrix} -1\\1\end{bmatrix}$
 $T\left(\begin{bmatrix} 0\\0\\1\end{bmatrix}\right) = 2\begin{bmatrix} 0\\1\end{bmatrix} + 1\begin{bmatrix} 1\\-1\end{bmatrix} = \begin{bmatrix} 1\\1\end{bmatrix}$
(b) $T\left(\begin{bmatrix} 1\\1\\2\end{bmatrix}\right) = T\left(\begin{bmatrix} 1\\1\\0\end{bmatrix}\right) + 2T\left(\begin{bmatrix} 0\\0\\1\end{bmatrix}\right) = \begin{bmatrix} 3\\-2\end{bmatrix} + 2\begin{bmatrix} 1\\1\end{bmatrix} = \begin{bmatrix} 5\\0\end{bmatrix}$

Armin Straub astraub@illinois.edu