Preparation problems for the discussion sections on September 9th and 11th

1. Determine if the vector
$$
\begin{bmatrix} -5 \\ 11 \\ -7 \end{bmatrix}
$$
 is a linear combination of $\begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 5 \\ 5 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 0 \\ 8 \end{bmatrix}$.

Solution: We check whether there are x_1, x_2, x_3 in $\mathbb R$ such that

$$
x_1\begin{bmatrix}1\\-2\\2\end{bmatrix}+x_2\begin{bmatrix}0\\5\\5\end{bmatrix}+x_3\begin{bmatrix}2\\0\\8\end{bmatrix}=\begin{bmatrix}-5\\11\\-7\end{bmatrix}.
$$

For this, it is enough to check whether the system of linear equations with the following augmented matrix is consistent:

$$
\left[\begin{array}{rrr} 1 & 0 & 2 & -5 \\ -2 & 5 & 0 & 11 \\ 2 & 5 & 8 & -7 \end{array}\right].
$$

We bring the augmented matrix in echelon form:

$$
\begin{bmatrix} 1 & 0 & 2 & -5 \ -2 & 5 & 0 & 11 \ 2 & 5 & 8 & -7 \end{bmatrix} \xrightarrow{R2 \to R2 + 2R1, R3 \to R3 - 2R1} \begin{bmatrix} 1 & 0 & 2 & -5 \ 0 & 5 & 4 & 1 \ 0 & 5 & 4 & 3 \end{bmatrix}
$$

$$
\xrightarrow{R3 \to R3 - R2} \begin{bmatrix} 1 & 0 & 2 & -5 \ 0 & 5 & 4 & 1 \ 0 & 0 & 0 & 2 \end{bmatrix}
$$

The system is inconsistent, because in echelon form there is a row of the form

[0 0 0 | x],
\nwhere x is non-zero. Hence the vector
$$
\begin{bmatrix} -5 \\ 11 \\ -7 \end{bmatrix}
$$
 is *not* a linear combination of
\n $\begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 5 \\ 5 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 8 \end{bmatrix}.$
\n2. *Give a geometric description of* **Span**{ $\begin{bmatrix} 3 \\ 0 \\ 2 \end{bmatrix}, \begin{bmatrix} -2 \\ 0 \\ 3 \end{bmatrix}$ }.

Solution: Two nonzero vectors v_1 and v_2 span a plane iff (this is short for "if and only if") there is no real number c such that $c\mathbf{v}_1 = \mathbf{v}_2$. Suppose there is c such that

$$
c\begin{bmatrix} 3 \\ 0 \\ 2 \end{bmatrix} = \begin{bmatrix} -2 \\ 0 \\ 3 \end{bmatrix}.
$$

By the first entry of the two vectors, we have $3c = -2$. So $c = -\frac{2}{3}$ $rac{2}{3}$. But by the third entry, we get $2c = 3$. So $c = \frac{3}{2}$ $\frac{3}{2}$. This is impossible since $-\frac{2}{3}$ $\frac{2}{3} \neq \frac{3}{2}$ $\frac{3}{2}$. Hence

$$
\text{Span}\{\begin{bmatrix} 3\\0\\2 \end{bmatrix}, \begin{bmatrix} -2\\0\\3 \end{bmatrix}\} \text{ is a plane.}
$$

3. True or false? Justify your answers!

- (a) Let A be an $m \times n$ -matrix and B be an $m \times l$ -matrix. Then the product AB is defined.
- (b) The weights $c_1, ..., c_p$ in a linear combination $c_1v_1 + ... + c_pv_p$ cannot all be zero.
- (c) $\text{Span}\{\boldsymbol{u}, \boldsymbol{v}\}\$ contains the line through \boldsymbol{u} and the origin.
- (d) Asking whether the linear system corresponding to $\begin{bmatrix} a_1 & a_2 & a_3 & b \end{bmatrix}$ is consistent, is the same as asking whether \bf{b} is a linear combination of $a_1, a_2, a_3.$

Solution: (a) This is false. Let A be a $m_1 \times m_2$ matrix and B be a $n_1 \times n_2$ matrix. Then AB is defined if and only if $m_2 = n_1$.

(b) This is false. The weights can be zero. Check the definition in the lecture notes!

(c) This is correct. The **Span** $\{u, v\}$ contains all vectors of the form

$$
c\boldsymbol{u}+0\boldsymbol{v},
$$

where c is in R. These vector form a line through u and the origin.

(d) This is correct. Check the definition of being a linear combination in the lecture notes.

4. Determine whether
$$
\begin{bmatrix} 2 \\ -1 \\ 6 \end{bmatrix}
$$
 is a linear combination of the columns of $\begin{bmatrix} 1 & 0 & 5 \\ -2 & 1 & -6 \\ 0 & 2 & 8 \end{bmatrix}$.

Solution: We check whether there are x_1, x_2, x_3 in R such that

$$
x_1\begin{bmatrix}1\\-2\\0\end{bmatrix}+x_2\begin{bmatrix}0\\1\\2\end{bmatrix}+x_3\begin{bmatrix}5\\-6\\8\end{bmatrix}=\begin{bmatrix}2\\-1\\6\end{bmatrix}.
$$

For this, it is enough to check whether the system of linear equations with the following augmented matrix is consistent:

$$
\left[\begin{array}{rrr} 1 & 0 & 5 & 2 \\ -2 & 1 & -6 & -1 \\ 0 & 2 & 8 & 6 \end{array}\right].
$$

We bring the augmented matrix in echelon form:

$$
\begin{bmatrix} 1 & 0 & 5 & 2 \ -2 & 1 & -6 & -1 \ 0 & 2 & 8 & 6 \end{bmatrix} \xrightarrow{R2 \to R2+2R1,} \begin{bmatrix} 1 & 0 & 5 & 2 \ 0 & 1 & 4 & 3 \ 0 & 2 & 8 & 6 \end{bmatrix}
$$

$$
\xrightarrow{R3 \to R3-R2} \begin{bmatrix} 1 & 0 & 5 & 2 \ 0 & 1 & 4 & 3 \ 0 & 0 & 0 & 0 \end{bmatrix}
$$

The system is consistent, because in echelon form there is a row of the form

 $\begin{bmatrix} 0 & 0 & 0 \end{bmatrix} x,$ where x is non-zero. Hence the vector $\sqrt{ }$ \perp 2 −1 6 1 is a linear combination of the columns of $\sqrt{ }$ $\overline{1}$ 1 0 5 -2 1 -6 0 2 8 1 $\vert \cdot$

5. Compute AB in two ways: (a) by the definition, where Ab_1 and Ab_2 are calculated separately, and (b) by the row-column rule for computing B.

(i)
$$
A = \begin{bmatrix} 4 & -2 \\ -3 & 0 \\ 3 & 5 \end{bmatrix}
$$
, $B = \begin{bmatrix} 1 & 3 \\ 2 & -1 \end{bmatrix}$ (ii) $A = \begin{bmatrix} 5 & 1 & 0 \\ 6 & 0 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 6 & 1 \\ 0 & -1 \\ 0 & 1 \end{bmatrix}$

Solution: For (i), by the row-column rule we get

$$
AB = \begin{bmatrix} 0 & 14 \\ -3 & -9 \\ 13 & 4 \end{bmatrix}.
$$

If we calculated Ab_1 and Ab_2 separately, we have

$$
\begin{bmatrix} 4 & -2 \ -3 & 0 \ 3 & 5 \end{bmatrix} \begin{bmatrix} 1 \ 2 \end{bmatrix} = \begin{bmatrix} 0 \ -3 \ 13 \end{bmatrix}
$$

and

$$
\begin{bmatrix} 4 & -2 \ -3 & 0 \ 3 & 5 \end{bmatrix} \begin{bmatrix} 3 \ 1 \end{bmatrix} = \begin{bmatrix} 14 \ -9 \ 4 \end{bmatrix}.
$$

For (ii), by the row-column rule we get

$$
AB = \left[\begin{array}{cc} 30 & 4\\ 36 & 7 \end{array}\right].
$$

If we calculated $A\boldsymbol{b}_1$ and $A\boldsymbol{b}_2$ separately, we have

$$
\begin{bmatrix} 5 & 1 & 0 \\ 6 & 0 & 1 \end{bmatrix} \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 30 \\ 36 \end{bmatrix}
$$

and

$$
\left[\begin{array}{cc} 5 & 1 & 0 \\ 6 & 0 & 1 \end{array}\right] \left[\begin{array}{c} 1 \\ -1 \\ 1 \end{array}\right] = \left[\begin{array}{c} 4 \\ 7 \end{array}\right].
$$

6. Let
$$
A = \begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix}
$$
.
\n(1) If $\mathbf{x} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, what is $A\mathbf{x}?$
\n(2) If $\mathbf{x} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$, what is $A\mathbf{x}?$

(3) Is $Ax = b$ uniquely solvable: is there for a given b always exactly one x ? Solution: For (1) :

$$
\begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.
$$

For (2):

$$
\begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.
$$

For (3): As we have shown in (1) and (2), if $b =$ $\lceil 0$ 0 1 , there are two vectors \boldsymbol{x} , namely $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ $\overline{0}$ $\Big]$ and $\Big[$ $\Big]$ −2 1 , such that $Ax = b$ (this means that there are actually infinitely many solutions x ; find all of them!).

7. (Some interesting matrices) Find a matrix A (what size!) such that (i) A $\lceil x \rceil$ \hat{y} 1 = $\lceil x \rceil$ \hat{y} 1

(ii)
$$
A\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ y + 3x \end{bmatrix}
$$

(iii)
$$
A\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} y \\ x \end{bmatrix}
$$

Solution: For (i):

