Preparation problems for the discussion sections on September 9th and 11th

1. Determine if the vector
$$\begin{bmatrix} -5\\11\\-7 \end{bmatrix}$$
 is a linear combination of $\begin{bmatrix} 1\\-2\\2 \end{bmatrix}$, $\begin{bmatrix} 0\\5\\5 \end{bmatrix}$, $\begin{bmatrix} 2\\0\\8 \end{bmatrix}$

Solution: We check whether there are x_1, x_2, x_3 in \mathbb{R} such that

$$x_1 \begin{bmatrix} 1\\-2\\2 \end{bmatrix} + x_2 \begin{bmatrix} 0\\5\\5 \end{bmatrix} + x_3 \begin{bmatrix} 2\\0\\8 \end{bmatrix} = \begin{bmatrix} -5\\11\\-7 \end{bmatrix}.$$

For this, it is enough to check whether the system of linear equations with the following augmented matrix is consistent:

$$\left[\begin{array}{rrrrr} 1 & 0 & 2 & | & -5 \\ -2 & 5 & 0 & 11 \\ 2 & 5 & 8 & | & -7 \end{array}\right].$$

We bring the augmented matrix in echelon form:

$$\begin{bmatrix} 1 & 0 & 2 & | & -5 \\ -2 & 5 & 0 & | & 11 \\ 2 & 5 & 8 & | & -7 \end{bmatrix} \xrightarrow{R_2 \to R_2 + 2R_1, R_3 \to R_3 - 2R_1} \begin{bmatrix} 1 & 0 & 2 & | & -5 \\ 0 & 5 & 4 & | & 1 \\ 0 & 5 & 4 & | & 3 \end{bmatrix}$$
$$\xrightarrow{R_3 \to R_3 - R_2} \begin{bmatrix} 1 & 0 & 2 & | & -5 \\ 0 & 5 & 4 & | & 1 \\ 0 & 0 & 0 & | & 2 \end{bmatrix}$$

The system is inconsistent, because in echelon form there is a row of the form

$$\begin{bmatrix} 0 & 0 & 0 & | x \end{bmatrix},$$

where x is non-zero. Hence the vector $\begin{bmatrix} -5\\11\\-7 \end{bmatrix}$ is not a linear combination of
 $\begin{bmatrix} 1\\-2\\2 \end{bmatrix}, \begin{bmatrix} 0\\5\\5 \end{bmatrix}, \begin{bmatrix} 2\\0\\8 \end{bmatrix}.$
2. Give a geometric description of $\mathbf{Span}\{\begin{bmatrix} 3\\0\\2 \end{bmatrix}, \begin{bmatrix} -2\\0\\3 \end{bmatrix}\}.$

Solution: Two nonzero vectors \mathbf{v}_1 and \mathbf{v}_2 span a plane iff (this is short for "if and only if") there is no real number c such that $c\mathbf{v}_1 = \mathbf{v}_2$. Suppose there is c such that

$$c\begin{bmatrix}3\\0\\2\end{bmatrix} = \begin{bmatrix}-2\\0\\3\end{bmatrix}.$$

By the first entry of the two vectors, we have 3c = -2. So $c = -\frac{2}{3}$. But by the third entry, we get 2c = 3. So $c = \frac{3}{2}$. This is impossible since $-\frac{2}{3} \neq \frac{3}{2}$. Hence

Span{
$$\begin{bmatrix} 3\\0\\2 \end{bmatrix}$$
, $\begin{bmatrix} -2\\0\\3 \end{bmatrix}$ } is a plane.

3. True or false? Justify your answers!

- (a) Let A be an $m \times n$ -matrix and B be an $m \times l$ -matrix. Then the product AB is defined.
- (b) The weights $c_1, ..., c_p$ in a linear combination $c_1 \boldsymbol{v}_1 + ... + c_p \boldsymbol{v}_p$ cannot all be zero.
- (c) $\mathbf{Span}\{u, v\}$ contains the line through u and the origin.
- (d) Asking whether the linear system corresponding to $\begin{bmatrix} a_1 & a_2 & a_3 & b \end{bmatrix}$ is consistent, is the same as asking whether **b** is a linear combination of a_1, a_2, a_3 .

Solution: (a) This is false. Let A be a $m_1 \times m_2$ matrix and B be a $n_1 \times n_2$ matrix. Then AB is defined if and only if $m_2 = n_1$.

(b) This is false. The weights can be zero. Check the definition in the lecture notes!

(c) This is correct. The $\mathbf{Span}\{u, v\}$ contains all vectors of the form

$$c\boldsymbol{u}+0\boldsymbol{v},$$

where c is in \mathbb{R} . These vector form a line through \boldsymbol{u} and the origin.

(d) This is correct. Check the definition of being a linear combination in the lecture notes.

4. Determine whether
$$\begin{bmatrix} 2\\-1\\6 \end{bmatrix}$$
 is a linear combination of the columns of $\begin{bmatrix} 1 & 0 & 5\\-2 & 1 & -6\\0 & 2 & 8 \end{bmatrix}$

Solution: We check whether there are x_1, x_2, x_3 in \mathbb{R} such that

$$x_1 \begin{bmatrix} 1\\-2\\0 \end{bmatrix} + x_2 \begin{bmatrix} 0\\1\\2 \end{bmatrix} + x_3 \begin{bmatrix} 5\\-6\\8 \end{bmatrix} = \begin{bmatrix} 2\\-1\\6 \end{bmatrix}.$$

For this, it is enough to check whether the system of linear equations with the following augmented matrix is consistent:

$$\begin{bmatrix} 1 & 0 & 5 & 2 \\ -2 & 1 & -6 & -1 \\ 0 & 2 & 8 & 6 \end{bmatrix}$$

We bring the augmented matrix in echelon form:

$$\begin{bmatrix} 1 & 0 & 5 & 2 \\ -2 & 1 & -6 & -1 \\ 0 & 2 & 8 & 6 \end{bmatrix} \xrightarrow{R2 \to R2 + 2R1,} \begin{bmatrix} 1 & 0 & 5 & 2 \\ 0 & 1 & 4 & 3 \\ 0 & 2 & 8 & 6 \end{bmatrix}$$
$$\xrightarrow{R3 \to R3 - R2} \begin{bmatrix} 1 & 0 & 5 & 2 \\ 0 & 1 & 4 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

The system is consistent, because in echelon form there is a row of the form

$$\begin{bmatrix} 0 & 0 & 0 & | x \end{bmatrix},$$

where x is non-zero. Hence the vector $\begin{bmatrix} 2 \\ -1 \\ 6 \end{bmatrix}$ is a linear combination of the
columns of $\begin{bmatrix} 1 & 0 & 5 \\ -2 & 1 & -6 \\ 0 & 2 & 8 \end{bmatrix}.$

5. Compute AB in two ways: (a) by the definition, where $A\mathbf{b}_1$ and $A\mathbf{b}_2$ are calculated separately, and (b) by the row-column rule for computing B.

(i)
$$A = \begin{bmatrix} 4 & -2 \\ -3 & 0 \\ 3 & 5 \end{bmatrix}, B = \begin{bmatrix} 1 & 3 \\ 2 & -1 \end{bmatrix}$$
 (ii) $A = \begin{bmatrix} 5 & 1 & 0 \\ 6 & 0 & 1 \end{bmatrix}, B = \begin{bmatrix} 6 & 1 \\ 0 & -1 \\ 0 & 1 \end{bmatrix}$

Solution: For (i), by the row-column rule we get

$$AB = \begin{bmatrix} 0 & 14 \\ -3 & -9 \\ 13 & 4 \end{bmatrix}.$$

If we calculated $A\boldsymbol{b}_1$ and $A\boldsymbol{b}_2$ separately, we have

$$\begin{bmatrix} 4 & -2 \\ -3 & 0 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ -3 \\ 13 \end{bmatrix}$$

and

$$\begin{bmatrix} 4 & -2 \\ -3 & 0 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 14 \\ -9 \\ 4 \end{bmatrix}.$$

For (ii), by the row-column rule we get

$$AB = \left[\begin{array}{cc} 30 & 4\\ 36 & 7 \end{array} \right].$$

If we calculated $A\boldsymbol{b}_1$ and $A\boldsymbol{b}_2$ separately, we have

$$\begin{bmatrix} 5 & 1 & 0 \\ 6 & 0 & 1 \end{bmatrix} \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 30 \\ 36 \end{bmatrix}$$

and

$$\begin{bmatrix} 5 & 1 & 0 \\ 6 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 7 \end{bmatrix}.$$

6. Let $A = \begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix}$. (1) If $\boldsymbol{x} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, what is $A\boldsymbol{x}$? (2) If $\boldsymbol{x} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$, what is $A\boldsymbol{x}$?

(3) Is Ax = b uniquely solvable: is there for a given b always exactly one x?
Solution: For (1):

$$\begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

For (2):

$$\begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \\ 4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

For (3): As we have shown in (1) and (2), if $b = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, there are two vectors \boldsymbol{x} , namely $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$, such that $A\boldsymbol{x} = \boldsymbol{b}$ (this means that there are actually infinitely many solutions \boldsymbol{x} ; find all of them!).

7. (Some interesting matrices) Find a matrix A (what size!) such that (i) $A \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$

(ii)
$$A\begin{bmatrix} x\\ y\end{bmatrix} = \begin{bmatrix} x\\ y+3x\end{bmatrix}$$

(iii)
$$A\begin{bmatrix} x\\ y \end{bmatrix} = \begin{bmatrix} y\\ x \end{bmatrix}$$

Solution: For (i):

For (ii):
For (iii):

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
For (iii):

$$A = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$