Preparation problems for the discussion sections on February 20th and 21st

1. Determine which of the following sets are subspaces and give reasons:

(a)
$$W_1 = \{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} : a - 2b = c, 4a + 2c = 1 \}$$

(b) $W_2 = \{ \begin{bmatrix} a - b \\ c \\ a + c \\ a - 2b - c \end{bmatrix} : a, b, c \in \mathbb{R} \},$
(c) $W_3 = \{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} : a \cdot b \ge 0 \}.$
(d) $W_4 = \{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} : a^2 + b^2 \le 1 \}.$

Solution: a) W_1 is not a subspace, since the zero vector is not in W_1 . The zero vector is not in W_1 , because

$$4 \cdot 0 + 2 \cdot 0 \neq 1$$

b) Since

$$\left\{ \begin{bmatrix} a-b\\c\\a+c\\a-2b-c \end{bmatrix} : a,b,c \in \mathbb{R} \right\} = \operatorname{span} \left\{ \begin{bmatrix} 1\\0\\1\\1 \end{bmatrix}, \begin{bmatrix} -1\\0\\0\\-2 \end{bmatrix}, \begin{bmatrix} 0\\1\\1\\-1 \end{bmatrix} \right\}$$

and every span is a subspace, this set is a subspace as well.

c) W_3 is not a vector subspace. Consider the two vectors $\begin{bmatrix} 1\\0 \end{bmatrix}$ and $\begin{bmatrix} 0\\-1 \end{bmatrix}$. Both are in W_3 , because $1 \cdot 0 = 0 \cdot (-1) \ge 0$. But

$$\begin{bmatrix} 1\\0 \end{bmatrix} + \begin{bmatrix} 0\\-1 \end{bmatrix} = \begin{bmatrix} 1\\-1 \end{bmatrix}$$

and $1 \cdot (-1) = -1 < 0$. Hence $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ is not in W_3 . Hence W_3 is not closed under addition.

d) This set is not a vector subspace. Consider the vector $\begin{bmatrix} 1\\0 \end{bmatrix}$. Since $1^2 \leq 1$, we have that $\begin{bmatrix} 1\\0 \end{bmatrix}$ is in W_4 . However, $2\begin{bmatrix} 1\\0 \end{bmatrix} = \begin{bmatrix} 2\\0 \end{bmatrix}$ is not in W_4 , since $2^2 = 4 > 1$. Hence W_4 is not closed under scalar multiplication.

2. Is
$$H = \left\{ \begin{bmatrix} a+1\\a \end{bmatrix} : a \text{ in } \mathbb{R} \right\}$$
 a subspace of \mathbb{R}^2 ? Why or why not?
Is $K = \left\{ \begin{bmatrix} a+1\\b \end{bmatrix} : a \text{ and } b \text{ in } \mathbb{R} \right\}$ a subspace of \mathbb{R}^2 ? Why or why not?

Solution: The set H is not a subspace, because it does not contain the zero vector $\begin{bmatrix} 0\\0 \end{bmatrix}$. (Why? Because if there is a in \mathbb{R} such that

$$\left[\begin{array}{c}a+1\\a\end{array}\right] = \left[\begin{array}{c}0\\0\end{array}\right]$$

then a + 1 = 0 and a = 0. Such an *a* can not exist). While *H* is not a subspace, *K* is a subspace. It is enough to realize that

$$\left\{ \begin{bmatrix} a+1\\b \end{bmatrix} : a \text{ and } b \text{ in } \mathbb{R} \right\} = \left\{ \begin{bmatrix} c\\b \end{bmatrix} : c \text{ and } b \text{ in } \mathbb{R} \right\} = \operatorname{span}\left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix} \right\} = \mathbb{R}^2.$$

Note that the first equality holds, because you can take c to be a - 1.

3. Is the set H of all matrices of the form $\begin{bmatrix} 2a & b \\ 3a+b & 3b \end{bmatrix}$ a subspace of $M_{2\times 2}$? Explain.

Solution: Let A be a matrix in H. There are a, b in \mathbb{R} such that

$$A = \begin{bmatrix} 2a & b \\ 3a + b & 3b \end{bmatrix} = a \begin{bmatrix} 2 & 0 \\ 3 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ 1 & 3 \end{bmatrix}.$$

Hence A is a linear combination (in $M_{2\times 2}$) of $\begin{bmatrix} 2 & 0 \\ 3 & 0 \end{bmatrix}$ and $\begin{bmatrix} 0 & 1 \\ 1 & 3 \end{bmatrix}$. Hence $H = \operatorname{span} \{ \begin{bmatrix} 2 & 0 \\ 3 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 3 \end{bmatrix} \},$

and so H is a subspace of $M_{2\times 2}$.

4. A matrix B is called symmetric if $B^T = B$. Let V be the set of all symmetric 2×2 -matrices. Is V a subspace of $M_{2\times 2}$?

Solution: Yes, V is a subspace of $M_{2\times 2}$. We have to check that it contains $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ and is closed under addition and scalar multiplication. First note that $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ is in V, because it is obviously symmetric.

Now take two matrices A, B in V. So we have $A^T = A$ and $B^T = B$. Then we have $(A + B)^T = A^T + B^T = A + B$.

Hence A + B is in V. So V is closed under addition.

Now take a matrix A in V and a scalar r. Since A is in V, we have $A^T = A$. Then we have $(rA)^T = rA^T = rA$.

Hence rA is in V. So V is closed under scalar multiplication.