Preparation problems for the discussion sections on February 20th and 21st

1. Determine which of the following sets are subspaces and give reasons:

(a)
$$
W_1 = \left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} : a - 2b = c, 4a + 2c = 1 \right\},
$$

\n(b) $W_2 = \left\{ \begin{bmatrix} c \\ c \\ a + c \\ a - 2b - c \end{bmatrix} : a, b, c \in \mathbb{R} \right\},$
\n(c) $W_3 = \left\{ \begin{bmatrix} a \\ b \\ b \end{bmatrix} : a \cdot b \ge 0 \right\}.$
\n(d) $W_4 = \left\{ \begin{bmatrix} a \\ a \\ b \end{bmatrix} : a^2 + b^2 \le 1 \right\}.$

Solution: a) W_1 is not a subspace, since the zero vector is not in W_1 . The zero vector is not in W_1 , because

$$
4 \cdot 0 + 2 \cdot 0 \neq 1.
$$

b) Since

$$
\left\{ \begin{bmatrix} a-b \\ c \\ a+c \\ a-2b-c \end{bmatrix} : a,b,c \in \mathbb{R} \right\} = \text{span}\left\{ \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 0 \\ -2 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \\ -1 \end{bmatrix} \right\}
$$

and every span is a subspace, this set is a subspace as well.

c) W_3 is not a vector subspace. Consider the two vectors $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ 0 $\Big]$ and $\Big[$ 0 −1 1 . Both are in *W*₃, because 1 ⋅ 0 = 0 ⋅ (-1) ≥ 0. But

$$
\begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}
$$

and $1 \cdot (-1) = -1 < 0$. Hence $\begin{bmatrix} 1 \end{bmatrix}$ −1 1 is not in W_3 . Hence W_3 is not closed under addition.

d) This set is not a vector subspace. Consider the vector $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ 0 . Since $1^2 \leq 1$, we have that $\lceil 1 \rceil$ 0 is in W_4 . However, $2\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ 0 1 = $\lceil 2$ 0 is not in W_4 , since $2^2 = 4 > 1$. Hence W_4 is not closed under scalar multiplication.

2. Is
$$
H = \left\{ \begin{bmatrix} a+1 \\ a \\ b \end{bmatrix} : a \in \mathbb{R} \right\}
$$
 a subspace of \mathbb{R}^2 ? Why or why not?
Is $K = \left\{ \begin{bmatrix} a+1 \\ b \end{bmatrix} : a \text{ and } b \text{ in } \mathbb{R} \right\}$ a subspace of \mathbb{R}^2 ? Why or why not?

Solution: The set H is not a subspace, because it does not contain the zero vector $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ 0 1 . (Why? Because if there is a in $\mathbb R$ such that

$$
\left[\begin{array}{c} a+1 \\ a \end{array}\right] = \left[\begin{array}{c} 0 \\ 0 \end{array}\right],
$$

then $a + 1 = 0$ and $a = 0$. Such an a can not exist). While H is not a subspace, K is a subspace. It is enough to realize that

$$
\left\{ \begin{bmatrix} a+1 \\ b \end{bmatrix} : a \text{ and } b \text{ in } \mathbb{R} \right\} = \left\{ \begin{bmatrix} c \\ b \end{bmatrix} : c \text{ and } b \text{ in } \mathbb{R} \right\} = \text{span}\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\} = \mathbb{R}^2.
$$

Note that the first equality holds, because you can take c to be $a - 1$.

3. Is the set H of all matrices of the form $\begin{bmatrix} 2a & b \\ 2a & b \end{bmatrix}$ $3a + b$ 3b 1 a subspace of $M_{2\times 2}$? Explain.

Solution: Let A be a matrix in H. There are a, b in $\mathbb R$ such that

$$
A = \begin{bmatrix} 2a & b \\ 3a + b & 3b \end{bmatrix} = a \begin{bmatrix} 2 & 0 \\ 3 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ 1 & 3 \end{bmatrix}.
$$

Hence *A* is a linear combination (in $M_{2\times2}$) of $\begin{bmatrix} 2 & 0 \\ 3 & 0 \end{bmatrix}$ and $\begin{bmatrix} 0 & 1 \\ 1 & 3 \end{bmatrix}$. Hence $H = \text{span}\{$ $\left[\begin{array}{cc} 2 & 0 \\ 3 & 0 \end{array}\right],$ $\left[\begin{array}{cc} 0 & 1 \\ 1 & 3 \end{array}\right]$ },

and so H is a subspace of $M_{2\times 2}$.

4. A matrix B is called symmetric if $B^T = B$. Let V be the set of all symmetric 2×2 -matrices. Is V a subspace of $M_{2\times2}$?

Solution: Yes, V is a subspace of $M_{2\times 2}$. We have to check that it contains $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ and is closed under addition and scalar multiplication. First note that $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ is in V, because it is obviously symmetric.

Now take two matrices A, B in V. So we have $A^T = A$ and $B^T = B$. Then we have $(A + B)^{T} = A^{T} + B^{T} = A + B.$

Hence $A + B$ is in V. So V is closed under addition.

Now take a matrix A in V and a scalar r. Since A is in V, we have $A^T = A$. Then we have $(rA)^T = rA^T = rA.$

Hence rA is in V. So V is closed under scalar multiplication.