Preparation problems for the discussion sections on September 23rd and 25th

1. Determine which of the following sets are subspaces and give reasons: $\begin{bmatrix} a \\ a \end{bmatrix}$

(a)
$$W_1 = \{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} : a - 2b = c, 4a + 2c = 1 \},$$

(b) $W_2 = \{ \begin{bmatrix} a - b \\ c \\ a + c \\ a - 2b - c \end{bmatrix} : a, b, c \in \mathbb{R} \},$
(c) $W_3 = \{ \begin{bmatrix} a \\ b \\ d \end{bmatrix} : a \cdot b \ge 0 \},$
(d) $W_4 = \{ \begin{bmatrix} a \\ b \\ d \end{bmatrix} : a^2 + b^2 \le 1 \}.$

Also draw the sets W_3 and W_4 and give geometric reasons why W_3 and W_4 are not subspaces.

2. Is
$$H = \left\{ \begin{bmatrix} a+1\\a \end{bmatrix} : a \text{ in } \mathbb{R} \right\}$$
 a subspace of \mathbb{R}^2 ? Why or why not?
Is $K = \left\{ \begin{bmatrix} a+1\\b \end{bmatrix} : a \text{ and } b \text{ in } \mathbb{R} \right\}$ a subspace of \mathbb{R}^2 ? Why or why not?

3. Is the set H of all matrices of the form
$$\begin{bmatrix} 2a & b \\ 3a+b & 3b \end{bmatrix}$$
 a subspace of $M_{2\times 2}$? Explain.

4. A matrix B is called symmetric if $B^T = B$. Let V be the set of all symmetric 2×2 -matrices. Is V a subspace of $M_{2\times 2}$?