Preparation problems for the discussion sections on September 30th and October 2nd

|.

1. Find an explicit description of Nul A, where

$$A = \begin{bmatrix} 1 & 3 & 5 & 0 \\ 0 & 1 & 4 & -2 \end{bmatrix}$$

Let $A = \begin{bmatrix} 1 & 3 & 1 & 2 \\ 2 & 6 & 4 & 8 \\ 0 & 0 & 2 & 4 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}$.

Find the set of all solutions to the equation $A\mathbf{x} = \mathbf{b}$, and express it as the sum of a particular solution and solutions in the null space of A.

3. Consider the subspace

2.

$$W := \left\{ \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} : a = 2b + c, \ 2a = c - 3d \right\}.$$

Find a matrix A and a matrix B such that W = Col(A) and W = Nul(B).

4. a) For which values of h is v_3 in the span of v_1 and v_2 ? b) For which values of h is $\{v_1, v_2, v_3\}$ linearly dependent?

(i)
$$\boldsymbol{v}_{1} = \begin{bmatrix} 1\\ -5\\ -3 \end{bmatrix}$$
, $\boldsymbol{v}_{2} = \begin{bmatrix} -2\\ 10\\ 6 \end{bmatrix}$, $\boldsymbol{v}_{3} = \begin{bmatrix} 2\\ -9\\ h \end{bmatrix}$,
(ii) $\boldsymbol{v}_{1} = \begin{bmatrix} -7\\ 3\\ -6 \end{bmatrix}$, $\boldsymbol{v}_{2} = \begin{bmatrix} 2\\ -1\\ 4 \end{bmatrix}$, $\boldsymbol{v}_{3} = \begin{bmatrix} 1\\ 2\\ h \end{bmatrix}$,
(iii) $\boldsymbol{v}_{1} = \begin{bmatrix} 6\\ -4\\ 3 \end{bmatrix}$, $\boldsymbol{v}_{2} = \begin{bmatrix} 6\\ -12\\ 2 \end{bmatrix}$, $\boldsymbol{v}_{3} = \begin{bmatrix} 9\\ h\\ 3 \end{bmatrix}$.

5. Check whether the following sets of vectors are linearly independent. Justify your answer!

$$a) \left\{ \begin{bmatrix} 4\\-2\\6 \end{bmatrix}, \begin{bmatrix} 6\\-3\\9 \end{bmatrix} \right\} \qquad b) \left\{ \begin{bmatrix} 4\\-2 \end{bmatrix}, \begin{bmatrix} 6\\0 \end{bmatrix}, \begin{bmatrix} 1\\3 \end{bmatrix}, \begin{bmatrix} -2\\1 \end{bmatrix} \right\}$$
$$c) \left\{ \begin{bmatrix} 4\\-2\\6 \end{bmatrix}, \begin{bmatrix} 6\\2\\9 \end{bmatrix}, \begin{bmatrix} 0\\0\\0 \end{bmatrix} \right\} \qquad d) \left\{ \begin{bmatrix} 4\\0\\-1\\2 \end{bmatrix}, \begin{bmatrix} 0\\-5\\5\\10 \end{bmatrix}, \begin{bmatrix} 3\\1\\-1\\-11 \end{bmatrix} \right\}$$

6. True or false? Justify your answers!

- (a) If three vectors in \mathbb{R}^3 span a plane, then they are linearly dependent.
- (b) If a set contains fewer vectors than there are entries in the vectors, then the set is linearly independent.
- (c) If \boldsymbol{x} and \boldsymbol{y} are linearly independent, and if \boldsymbol{z} is in the span of \boldsymbol{x} and \boldsymbol{y} , then \boldsymbol{x} , \boldsymbol{y} and \boldsymbol{z} are linearly dependent.
- (d) If a set in \mathbb{R}^n is linearly independent, then it contains n vectors.