Preparation problems for the discussion sections on October 7th and 9th

1. Determine a basis for each of the following subspaces:

(i)
$$H = \{ \begin{bmatrix} 4s \\ -3s \\ -t \end{bmatrix} : s, t \in \mathbb{R} \},$$

(ii) $K = \{ \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} : a - 3b + c = 0 \},$
(iii) $Col(\begin{bmatrix} 1 & 2 & 3 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}),$
(iv) $Nul(\begin{bmatrix} 1 & 2 & 3 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}).$

2. Determine the dimension of Nul(A) and Col(A), where

A =	1	2	3	-4	8
	1	2	0	2	8
	2	4	-3	10	9
	3	6	0	6	9

•

3. Let A, B be two 4×3 matrices. Let $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$ be the columns of A and let $\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3$ be the columns of B.

- (i) Suppose that $\{a_1, a_2, a_3\}$ is linearly independent. Find a basis for Col(A) and describe Nul(A).
- (ii) Suppose that $\{\mathbf{b}_1, \mathbf{b}_2\}$ is linearly independent and $\mathbf{b}_3 = 2\mathbf{b}_1 + 7\mathbf{b}_2$. Find a basis for Col(B) and a basis for Nul(B).

4. Let
$$\boldsymbol{u}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
, $\boldsymbol{u}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and let $\mathcal{B} = \{\boldsymbol{u}_1, \boldsymbol{u}_2\}$.
(i) Let $\boldsymbol{v} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$. Express \boldsymbol{v} in terms of the basis \mathcal{B} .
(ii) Let $\boldsymbol{w} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Express \boldsymbol{w} in terms of the basis \mathcal{B} .

(iii) Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be defined such that $T(\mathbf{v})$ is expressing \mathbf{v} in terms of the basis \mathcal{B} . (Convince yourself that this is a linear transformation.) Determine the matrix that represents T with respect to the standard basis of \mathbb{R}^2 . **5.** Let $L: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation such that

$$L\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}2\\8\\4\end{bmatrix}, \quad L\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}3\\0\\1\end{bmatrix}.$$

What is $L\left(\begin{bmatrix}2\\1\end{bmatrix}\right)$?

6. Let $T : \mathbb{R}^2 \to \mathbb{R}^3$ be the linear transformations with

$$T\left(\begin{bmatrix}1\\-1\end{bmatrix}\right) = \begin{bmatrix}5\\0\\1\end{bmatrix}, \quad T\left(\begin{bmatrix}1\\1\end{bmatrix}\right) = \begin{bmatrix}0\\1\\0\end{bmatrix}.$$

(i) Consider the basis $\mathcal{B}_1 = \{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \}$ of \mathbb{R}^2 and the basis $\mathcal{B}_2 = \{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \}$ of \mathbb{R}^3 .

Determine the matrix A which represents T with respect to the bases \mathcal{B}_1 and \mathcal{B}_2 . Do you have $T(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^2$?

(ii) Consider the basis $C_1 := \{ \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \}$ of \mathbb{R}^2 and the basis $C_2 = \{ \begin{bmatrix} 5 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \}$ of \mathbb{R}^3 . Determine the probability of \mathbb{R}^3 .

 \mathbb{R}^3 . Determine the matrix *B* which represents *T* with respect to the bases \mathcal{C}_1 and \mathcal{C}_2 . Do you have $T(\mathbf{x}) = B\mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^2$?

7. Let $I: \mathbb{P}^3 \to \mathbb{P}^4$ be the integration linear transformation that maps p to

$$\int_0^t p(t)dt.$$

Consider the basis $\mathcal{B} = \{1, t, t^2, t^3\}$ of \mathbb{P}^3 and the basis $\mathcal{C} = \{1, t, t^2, t^3, t^4\}$ of \mathbb{P}^4 . Determine the matrix which represents I with respect to the bases \mathcal{B} and \mathcal{C} .