Preparation problems for the discussion sections on October 14th and 16th

1. Let $\boldsymbol{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Find the length of \boldsymbol{v} . Find a vector \boldsymbol{u} in the direction of \boldsymbol{v} that has length 1. Find a vector \boldsymbol{w} that is orthogonal to \boldsymbol{v} .

2. Let
$$\boldsymbol{u}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
, $\boldsymbol{u}_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, and $\boldsymbol{v} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$. Find real numbers c_1, c_2 such that $\boldsymbol{v} = c_1 \boldsymbol{u}_1 + c_2 \boldsymbol{u}_2$.

3. Let
$$V = \{ \begin{vmatrix} a \\ b \\ c \\ d \end{vmatrix}$$
 : $a + b + c + d = 0 \}$ be a subspace of \mathbb{R}^4 .

- (a) Find a basis for V.
- (b) Find a vector that is orthogonal to V.
- (c) Can you find two linearly independent vectors that are orthogonal to V?

4. Let
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 4 & 8 & 2 \\ 1 & 2 & 5 \end{bmatrix}$$
.

- (a) Find an echelon form U of A. What are the column spaces Col(A), Col(U)? Are they equal?
- (b) Find a basis for Col(U) and a basis for Col(A).
- (c) What are the row spaces $Col(A^T)$, and $Col(U^T)$. Are they equal?
- (d) Find a basis for the row space of A, $Col(A^{T})$.

5. Let $B = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix}$.

- (a) Find a basis for Nul(B).
- (b) Find two linear independent vectors that are orthogonal to Nul(B).
- (c) Is there a non-zero vector in \mathbb{R}^2 orthogonal to Col(B)?

6. Let $\mathcal{B} := \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\}$ be a basis of \mathbb{R}^3 . Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation that maps $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ in \mathbb{R}^3 to $\begin{bmatrix} z \\ x \\ y \end{bmatrix}$. Determine the matrix corresponding to T with respect to the bases \mathcal{B} and \mathcal{B} .

7. Let $I: \mathbb{P}^3 \to \mathbb{P}^4$ be the linear transformation that maps p(t) to

$$tp(t) + p'(t)$$

Consider the basis $\mathcal{B} = \{1, t, t^2, t^3\}$ of \mathbb{P}^3 and the basis $\mathcal{C} = \{1, t, t^2, t^3, t^4\}$ of \mathbb{P}^4 . Determine the matrix which represents I with respect to the bases \mathcal{B} and \mathcal{C} .

- 8. True or False? Justify your answers.
 - (a) The map $T: \mathbb{R}^2 \to \mathbb{R}$ given by $T \begin{bmatrix} a \\ b \end{bmatrix} = \sqrt{a^2 + b^2}$ is a linear transformation.
 - (b) The map $T: \mathbb{R}^2 \to \mathbb{R}^2$ given by $T \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} -b \\ a \end{bmatrix}$ is a linear transformation.
 - (c) If \boldsymbol{u} and \boldsymbol{v} in \mathbb{R}^2 are such that $\boldsymbol{u}.\boldsymbol{v} = 0$ (\boldsymbol{u} and \boldsymbol{v} are orthogonal) then \boldsymbol{u} and \boldsymbol{v} are perpendicular (geometrically) to each other.
 - (d) Let V be a subspace and $\boldsymbol{u}, \boldsymbol{v}$ be two vectors in V, then $\boldsymbol{v} \frac{\boldsymbol{u}.\boldsymbol{v}}{\boldsymbol{u}.\boldsymbol{u}}\boldsymbol{u}$ is orthogonal to \boldsymbol{u} .
 - (e) Let $T : V \to W$ be a linear transformation and $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$ be vectors in V. If $T(\mathbf{v}_1), T(\mathbf{v}_2), ..., T(\mathbf{v}_n)$ are linearly independent then $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$ are also linearly independent.
 - (f) Let $T : V \to W$ be a linear transformation and $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$ be vectors in V. If $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$ are linearly independent then $T(\mathbf{v}_1), T(\mathbf{v}_2), ..., T(\mathbf{v}_n)$ are also linearly independent.
 - (g) Let $T : \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation. The dimension of the image of T is equal to 2.