Preparation problems for the discussion sections on October 28th and 30th

1. Let
$$\boldsymbol{u}_1 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$$
, $\boldsymbol{u}_2 = \begin{bmatrix} 2 \\ -1 \\ 2 \end{bmatrix}$. Let $\boldsymbol{v} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$. Can you find real numbers c_1, c_2 such that $\boldsymbol{v} = c_1 \boldsymbol{u}_1 + c_2 \boldsymbol{u}_2$?

Solution: Since \mathbf{u}_1 and \mathbf{u}_2 are orthogonal (i.e. $\mathbf{u}_1 \cdot \mathbf{u}_2 = 0$), we have that if

 $\mathbf{v} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2$

for some real number c_1, c_2 , then

$$\mathbf{v} \cdot \mathbf{u}_1 = c_1 \mathbf{u}_1 \cdot \mathbf{u}_1 + c_2 \mathbf{u}_2 \cdot \mathbf{u}_1 = c_1 \mathbf{u}_1 \cdot \mathbf{u}_1$$

and

$$\mathbf{v} \cdot \mathbf{u}_2 = c_1 \mathbf{u}_1 \cdot \mathbf{u}_2 + c_2 \mathbf{u}_2 \cdot \mathbf{u}_2 = c_2 \mathbf{u}_2 \cdot \mathbf{u}_2$$

Hence

$$c_1 = \frac{\mathbf{v} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} = \frac{\begin{bmatrix} 1\\-2\\1 \end{bmatrix} \cdot \begin{bmatrix} 1\\2\\0 \end{bmatrix}}{\begin{bmatrix} 1\\2\\0 \end{bmatrix} \cdot \begin{bmatrix} 1\\2\\0 \end{bmatrix}} = -\frac{3}{5}$$

and

$$c_2 = \frac{\mathbf{v} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} = \frac{\begin{bmatrix} 1\\-2\\1 \end{bmatrix} \cdot \begin{bmatrix} 2\\-1\\2 \end{bmatrix}}{\begin{bmatrix} 2\\-1\\2 \end{bmatrix} \cdot \begin{bmatrix} 2\\-1\\2 \end{bmatrix}} = \frac{6}{9} = \frac{2}{3}$$

However, we see that $-\frac{3}{5}\mathbf{u}_1 + \frac{2}{3}\mathbf{u}_2 \neq \mathbf{v}$, so it is not possible to find real numbers c_1, c_2 such that $\mathbf{v} = c_1\mathbf{u}_1 + c_2\mathbf{u}_2$.

The numbers that we found, however, are "best possible" in the sense that the two sides are as close as possible. In other words, $-\frac{3}{5}\mathbf{u}_1 + \frac{2}{3}\mathbf{u}_2$ is the orthogonal projection of \mathbf{v} onto the space spanned by \mathbf{u}_1 and \mathbf{u}_2 .

[Note that you can solve this problem in many other ways. The way above serves to make us more familiar with notions such as orthogonal projections.]

2. Let $W = \text{Span}\{v\}$, where $v = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, be a subspace of \mathbb{R}^3 . Find the projections a_W, b_W, c_W of the vectors

$$\boldsymbol{a} = \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \quad \boldsymbol{b} = \begin{bmatrix} 2\\-1\\-1 \end{bmatrix}, \quad \boldsymbol{c} = \begin{bmatrix} 2\\2\\2 \end{bmatrix}$$

onto the subspace W. Interpret your results geometrically.

Solution: We have,

$$\mathbf{a}_{W} = \frac{\mathbf{a} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v} = \frac{\begin{bmatrix} 1\\2\\3 \end{bmatrix} \cdot \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}}{\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}} \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} = \begin{bmatrix} 6\\3\\1\\1\\1 \end{bmatrix} = \begin{bmatrix} 2\\2\\2\\2 \end{bmatrix},$$
$$\mathbf{b}_{W} = \frac{\mathbf{b} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v} = \frac{\begin{bmatrix} 2\\-1\\-1\\-1 \end{bmatrix} \cdot \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix}}{\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}} \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} = \begin{bmatrix} 0\\3\\1\\1\\1 \end{bmatrix} = \begin{bmatrix} 0\\0\\0 \end{bmatrix},$$
$$\mathbf{c}_{W} = \frac{\mathbf{c} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v} = \frac{\begin{bmatrix} 2\\-1\\-1\\-1\\1\\1 \end{bmatrix} \cdot \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix}}{\begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix}} \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix} = \begin{bmatrix} 0\\3\\1\\1\\1 \end{bmatrix} = \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix},$$

The fact that \mathbf{b}_W is zero means that \mathbf{b} is orthogonal to W. In this, and the other two cases, we obtain the vector in W which is closest to the vector that we start with.

Solution:

(i) The closest point is the orthogonal projection:

(ii) The projections of the four standard basis vectors are

Hence, the projection matrix is:

$$P = \begin{bmatrix} \frac{3}{4} & -\frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ -\frac{1}{4} & \frac{3}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{bmatrix}$$

(iii) Using P, we find that the orthogonal projection is

$$\begin{bmatrix} 1\\0\\1\\0\\\end{bmatrix}_{W} = \begin{bmatrix} \frac{3}{4} & -\frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ -\frac{1}{4} & \frac{3}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} 1\\0\\1\\0\\\end{bmatrix} = \begin{bmatrix} 1\\0\\\frac{1}{2}\\\frac{1}{2} \end{bmatrix}$$

4. Let
$$W = \text{Span}\left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\0 \end{bmatrix} \right\}$$
 and $V = \text{Span}\left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\-2 \end{bmatrix} \right\}$ be subspaces of \mathbb{R}^3 .

- (i) Find the projection matrices, P and Q, corresponding to the projections onto W and V, respectively.
- (ii) Check that PQ = QP. Can you interpret PQ as a projection matrix?

Solution:

(i) The projections onto W of the three standard basis vectors are

$$\begin{bmatrix} 1\\0\\0 \end{bmatrix}_{W} = \frac{\begin{bmatrix} 1\\0\\0 \end{bmatrix} \cdot \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}}{\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}} \cdot \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} + \frac{\begin{bmatrix} 1\\0\\0\\0 \end{bmatrix} \cdot \begin{bmatrix} 1\\-1\\0\\0 \end{bmatrix}}{\begin{bmatrix} 1\\-1\\0\\0 \end{bmatrix}} \begin{bmatrix} 1\\-1\\0\\0 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 1\\-1\\0\\0 \end{bmatrix} = \begin{bmatrix} \frac{5}{6}\\-\frac{1}{6}\\\frac{1}{3}\\\frac{1}{3} \end{bmatrix},$$

$$\begin{bmatrix} 0\\1\\0 \end{bmatrix}_{W} = \frac{\begin{bmatrix} 0\\1\\0 \end{bmatrix} \cdot \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}}{\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} \cdot \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}} + \frac{\begin{bmatrix} 0\\1\\0\\0 \end{bmatrix} \cdot \begin{bmatrix} 1\\-1\\0\\0 \end{bmatrix}}{\begin{bmatrix} 1\\-1\\0\\0 \end{bmatrix}} \begin{bmatrix} 1\\-1\\0\\0 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 1\\-1\\0\\0 \end{bmatrix} = \begin{bmatrix} -\frac{1}{6}\\\frac{5}{6}\\\frac{1}{3}\\\frac{1}{3} \end{bmatrix},$$

$$\begin{bmatrix} 0\\0\\1 \end{bmatrix}_{W} = \frac{\begin{bmatrix} 0\\0\\1 \end{bmatrix} \cdot \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}}{\begin{bmatrix} 1\\1\\1 \end{bmatrix} \cdot \begin{bmatrix} 1\\1\\1 \end{bmatrix}} + \frac{\begin{bmatrix} 0\\0\\1 \end{bmatrix} \cdot \begin{bmatrix} 1\\-1\\0 \end{bmatrix}}{\begin{bmatrix} 1\\-1\\0 \end{bmatrix}} \begin{bmatrix} 1\\-1\\0 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1\\1\\1 \end{bmatrix} + 0 \begin{bmatrix} 1\\-1\\0 \end{bmatrix} = \begin{bmatrix} \frac{1}{3}\\\frac{1}{3}\\\frac{1}{3} \end{bmatrix}.$$

Hence, the projection matrix corresponding to the orthogonal projection onto W is:

$$P = \begin{bmatrix} \frac{5}{6} & -\frac{1}{6} & \frac{1}{3} \\ -\frac{1}{6} & \frac{5}{6} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$$

On the other hand, the projections onto V of the three standard basis vectors are

$$\begin{bmatrix} 1\\0\\0 \end{bmatrix}_{V} = \frac{\begin{bmatrix} 1\\0\\0 \end{bmatrix} \cdot \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}}{\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} \cdot \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}} + \frac{\begin{bmatrix} 1\\0\\0\\0 \end{bmatrix} \cdot \begin{bmatrix} 1\\1\\-2 \end{bmatrix}}{\begin{bmatrix} 1\\1\\-2 \end{bmatrix}} \begin{bmatrix} 1\\1\\-2 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1\\1\\1 \end{bmatrix} + \frac{1}{6} \begin{bmatrix} 1\\1\\-2 \end{bmatrix} = \begin{bmatrix} \frac{1}{2}\\\frac{1}{2}\\0 \end{bmatrix},$$

$$\begin{bmatrix} 0\\1\\0 \end{bmatrix}_{V} = \frac{\begin{bmatrix} 0\\1\\0 \end{bmatrix} \cdot \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}}{\begin{bmatrix} 1\\1\\1 \end{bmatrix} \cdot \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}} \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} + \frac{\begin{bmatrix} 0\\1\\0\\1\\1 \end{bmatrix} \cdot \begin{bmatrix} 1\\1\\1\\-2 \end{bmatrix}}{\begin{bmatrix} 1\\1\\1\\-2 \end{bmatrix}} \begin{bmatrix} 1\\1\\1\\-2 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} + \frac{1}{6} \begin{bmatrix} 1\\1\\1\\-2 \end{bmatrix} = \begin{bmatrix} \frac{1}{2}\\\frac{1}{2}\\\frac{1}{2}\\0 \end{bmatrix},$$

$$\begin{bmatrix} 0\\0\\1\\1\\-2 \end{bmatrix} = \begin{bmatrix} 0\\1\\1\\1\\-2 \end{bmatrix} \begin{bmatrix} 1\\1\\1\\-2 \end{bmatrix} \cdot \begin{bmatrix} 1\\1\\1\\-2 \end{bmatrix} = \begin{bmatrix} 1\\1\\1\\-2 \end{bmatrix} = \begin{bmatrix} 1\\1\\1\\1\\-2 \end{bmatrix} = \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix} \cdot \begin{bmatrix} 1\\1\\1\\-2 \end{bmatrix} = \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix} \cdot \begin{bmatrix} 1\\1\\1\\-2 \end{bmatrix} = \begin{bmatrix} 1\\1\\1\\-2 \end{bmatrix} = \begin{bmatrix} 1\\1\\1\\1\\-2 \end{bmatrix} = \begin{bmatrix} 1\\1\\1\\1\\-2 \end{bmatrix} = \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}.$$

Hence, the projection matrix corresponding to the orthogonal projection onto V is:

$$P = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0\\ \frac{1}{2} & \frac{1}{2} & 0\\ 0 & 0 & 1 \end{bmatrix}$$

(ii) PQ = QP is the matrix corresponding to the orthogonal projection onto the intersection of W and V (the space of all vectors in both W and V), that is $W \cap V = \operatorname{span}\left\{ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} \right\}$. [Note: since $\begin{bmatrix} 1\\-1\\0 \end{bmatrix} \cdot \begin{bmatrix} 1\\1\\-2 \end{bmatrix} = 0$ if you compute orthogonal projection onto W and

then onto V the answer will be same as computing orthogonal projection onto V and then onto W

5. Let
$$A = \begin{bmatrix} 1 & -1 \\ 1 & 1 \\ 0 & 0 \end{bmatrix}$$
 and $\boldsymbol{b} = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$.

- **a.** Does **b** belong to the column space of A? Can you solve $A\mathbf{x} = \mathbf{b}$?
- **b.** What do you expect the projection of **b** onto W = Col(A) to be?
- **c.** Find the projection **b** of **b** onto Col(A), and then solve $A\hat{x} = \hat{b}$. (The vector \hat{x} is called the least square solution of $A\mathbf{x} = \mathbf{b}$.)
- **d.** Solve the equation $A^T A \hat{x} = A^T b$. Compare with your result of the previous part! (This equation is called the normal equation of $A\mathbf{x} = \mathbf{b}$.)

e. Answer these questions for A as above but with
$$\boldsymbol{b} = \begin{bmatrix} 1\\1\\0 \end{bmatrix}$$
 (and then $\boldsymbol{b} = \begin{bmatrix} 0\\0\\4 \end{bmatrix}$)

Solution: **a.** No, **b** does not belong to the column operation $\begin{bmatrix} 1\\1\\0 \end{bmatrix}$ and $\begin{bmatrix} -1\\1\\0 \end{bmatrix}$. Hence there is no solution to $A\mathbf{x} = \mathbf{b}$. **b.** W is the span of $\begin{bmatrix} 1\\1\\0 \end{bmatrix}$ and $\begin{bmatrix} -1\\1\\0 \end{bmatrix}$. It can easily be seen that W is the set of vectors in \mathbb{R}^3 Solution: a. No, b does not belong to the column space of A, because it is not a linear

whose third entry is 0. Hence $\begin{bmatrix} 4\\5\\0 \end{bmatrix}$ is in W. Note

$$\begin{bmatrix} 0\\0\\6 \end{bmatrix} = \mathbf{b} - \begin{bmatrix} 4\\5\\0 \end{bmatrix}$$

is orthogonal to W. Hence $\begin{bmatrix} 4\\5\\0 \end{bmatrix}$ should be the orthogonal projection of **b** onto W.

Note that the columns of A are an orthogonal basis for W. Hence, we actually know how to compute the orthogonal projection of \mathbf{b} onto W. The result will be as above, and the computation is given in Step 1 below.]

c. Step 1: Find the orthogonal projection of **b** onto W.

$$\widehat{\mathbf{b}} = \frac{\begin{bmatrix} 4\\5\\6\end{bmatrix} \cdot \begin{bmatrix} 1\\1\\0\end{bmatrix}}{\begin{bmatrix} 1\\1\\0\end{bmatrix} \cdot \begin{bmatrix} 1\\1\\0\end{bmatrix}} + \frac{\begin{bmatrix} 4\\5\\6\end{bmatrix} \cdot \begin{bmatrix} -1\\1\\0\end{bmatrix}}{\begin{bmatrix} -1\\1\\0\end{bmatrix}} \begin{bmatrix} -1\\1\\0\end{bmatrix} = 4.5\begin{bmatrix} 1\\1\\0\end{bmatrix} + .5\begin{bmatrix} -1\\1\\0\end{bmatrix} = \begin{bmatrix} 4\\5\\0\end{bmatrix}$$

Step 2: Solve $A\widehat{\mathbf{x}} = \widehat{\mathbf{b}}$.

$$\begin{bmatrix} 1 & -1 & | & 4 \\ 1 & 1 & | & 5 \\ 0 & 0 & | & 0 \end{bmatrix} \xrightarrow{R_2 \to R_2 - R_1} \begin{bmatrix} 1 & -1 & | & 4 \\ 0 & 2 & | & 1 \\ 0 & 0 & | & 0 \end{bmatrix} \xrightarrow{R_1 \to R_1 + .5R_2} \begin{bmatrix} 1 & 0 & | & 4.5 \\ 0 & 2 & | & 1 \\ 0 & 0 & | & 0 \end{bmatrix}$$
$$\widehat{\mathbf{x}} = \begin{bmatrix} 4.5 \\ \mathbf{x} \end{bmatrix}.$$

Hence,

$$\widehat{\mathbf{x}} = \begin{bmatrix} 4.5\\.5 \end{bmatrix}.$$

Note that this was unnecessary! When projecting **b** onto W, we already expressed the result as a linear combination of the columns of A.]

d. We first calculate $A^T A$ and $A^T \mathbf{b}$:

$$A^{T}A = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix},$$
$$A^{T}\mathbf{b} = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} = \begin{bmatrix} 9 \\ 1 \end{bmatrix}.$$

Now we have to solve

$$\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \widehat{\mathbf{x}} = \begin{bmatrix} 9 \\ 1 \end{bmatrix}$$

Clearly, then

$$\widehat{\mathbf{x}} = \begin{bmatrix} 4.5\\.5\\.5 \end{bmatrix}.$$

e. I leave the details to you, but here are the solutions. For $\mathbf{b} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$:

$$\widehat{\mathbf{b}} = \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \widehat{\mathbf{x}} = \begin{bmatrix} 1\\0 \end{bmatrix}$$

Note that in this case $\hat{\mathbf{b}} = \mathbf{b}$ and $\hat{\mathbf{x}}$ is a solution (not just a least squares solution) of $A\mathbf{x} = \mathbf{b}$.

For
$$\mathbf{b} = \begin{bmatrix} 0\\0\\4 \end{bmatrix}$$
:
 $\widehat{\mathbf{b}} = \begin{bmatrix} 0\\0\\0 \end{bmatrix}, \widehat{\mathbf{x}} = \begin{bmatrix} 0\\0 \end{bmatrix}$

This was to be expected because **b** is orthogonal to the columns of A.