Preparation problems for the discussion sections on October 28th and 30th

1. Let
$$\boldsymbol{u}_1 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$$
, $\boldsymbol{u}_2 = \begin{bmatrix} 2 \\ -1 \\ 2 \end{bmatrix}$. Let $\boldsymbol{v} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$. Can you find real numbers c_1, c_2 such that $\boldsymbol{v} = c_1 \boldsymbol{u}_1 + c_2 \boldsymbol{u}_2$?

2. Let $W = \text{Span}\{v\}$, where $v = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, be a subspace of \mathbb{R}^3 . Find the projections a_W, b_W, c_W

 $of\ the\ vectors$

$$\boldsymbol{a} = \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \quad \boldsymbol{b} = \begin{bmatrix} 2\\-1\\-1 \end{bmatrix}, \quad \boldsymbol{c} = \begin{bmatrix} 2\\2\\2 \end{bmatrix}$$

onto the subspace W. Interpret your results geometrically.

(iii) Use the projection matrix, P, to find the projection of $\begin{bmatrix} 0\\1\\0 \end{bmatrix}$ onto the subspace W.

4. Let
$$W = \text{Span}\left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\0 \end{bmatrix} \right\}$$
 and $V = \text{Span}\left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\-2 \end{bmatrix} \right\}$ be subspaces of \mathbb{R}^3 .

- (i) Find the projection matrices, P and Q, corresponding to the projections onto W and V, respectively.
- (ii) Check that PQ = QP. Can you explain this by interpreting PQ as a projection matrix?

5. Let
$$A = \begin{bmatrix} 1 & -1 \\ 1 & 1 \\ 0 & 0 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$

- **a.** Does **b** belong to the column space of A? Can you solve $A\mathbf{x} = \mathbf{b}$?
- **b.** What do you expect the projection of **b** onto W = Col(A) to be?
- **c.** Find the projection \hat{b} of **b** onto Col(A), and then solve $A\hat{x} = \hat{b}$. (The vector \hat{x} is called the least square solution of $A\mathbf{x} = \mathbf{b}$.)
- **d.** Solve the equation $A^T A \hat{x} = A^T \boldsymbol{b}$. Compare with your result of the previous part! (This equation is called the normal equation of $A \boldsymbol{x} = \boldsymbol{b}$.)
- **e.** Answer these questions for A as above but with $\mathbf{b} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ (and then $\mathbf{b} = \begin{bmatrix} 0 \\ 0 \\ 4 \end{bmatrix}$).