Preparation problems for the discussion sections on November 4th and 6th

1. Let
$$A = \begin{bmatrix} 0 & 1 \\ -2 & 2 \\ 2 & 2 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$. Find the least squares solution $\widehat{\mathbf{x}}$ of $A\mathbf{x} = \mathbf{b}$.

2. A scientist tries to find the relation between the mysterious quantities x and y. She measures the following values:

x	1	2	3	4
y	2	5	9	17

- (i) Suppose that y is a linear function of the form a + bx. Set up the system of equations to find the coefficients a and b.
- (ii) Find the best estimate for the coefficients.
- (iii) Same question if we suppose that y is a quadratic function of the $a + bx + cx^2$.
- **3.** The system of the equations $A\mathbf{x} = \mathbf{b}$ with

$$A = \begin{bmatrix} 1 & -1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{bmatrix}, \ \boldsymbol{b} = \begin{bmatrix} 5 \\ 0 \\ 5 \\ 10 \end{bmatrix},$$

is not consistent.

- (i) Find the least squares solution \hat{x} for the equation Ax = b.
- (ii) Determine the least squares line for the data points (-1, 5), (0, 0), (1, 5), (2, 10).

4. Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ and $\mathbf{v}_3 = \begin{bmatrix} 2 \\ 1 \\ 0 \\ -1 \end{bmatrix}$. Using Gram-Schmidt, find an orthonormal basis

for $W = Span(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$, using $\mathbf{v}_1, \mathbf{v}_2$, and \mathbf{v}_3 .

5. Let $A = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$.

- (i) Calculate $A^T A$. What does this tell you about the columns of A?
- (ii) Find an orthonormal basis $\{q_1, q_2\}$ for Col(A) (starting with the columns of A!). Put $Q = \begin{bmatrix} q_1 & q_2 \end{bmatrix}$. What is Q^{-1} ?

6. Let $A = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$. Find the QR decomposition of A: write A = QR where Q is a matrix

with orthonormal columns and R is an upper triangular matrix.

7. Let

$$Q_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix},$$

the matrix for rotation over θ (counter clockwise).

- (i) Calculate $Q_{\theta}^{T}Q_{\theta}$. What does this tell you about the columns of Q_{θ} ? (ii) What is Q_{θ}^{-1} ? Express Q_{θ}^{-1} in terms of another rotation matrix Q_{α} .
- (iii) Show that if $\boldsymbol{x} = \begin{bmatrix} a \\ b \end{bmatrix}$ then the vector \boldsymbol{x} and the rotated vector $Q_{\theta}\boldsymbol{x}$ have the same length.

8. Let P be a permutation matrix, so each row and each column has a single non zero entry 1. Write $P = \begin{bmatrix} P_1 & P_2 & \dots & P_n \end{bmatrix}$.

- (i) What is the dot product between the columns of P: what is $P_i \cdot P_j$? (ii) What is P^{-1} ?