Preparation problems for the discussion sections on November 11th and 13th

1. Let
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$
.

a. Find the QR decomposition of A: write A = QR where Q is a matrix with orthonormal columns and R is an upper triangular matrix.

b. Let $\boldsymbol{b} = \begin{bmatrix} 0\\0\\1 \end{bmatrix}$. Use the QR decomposition of A to find the least squares solution of $A\hat{\boldsymbol{r}} = \boldsymbol{b}$ (by solving $R\hat{\boldsymbol{x}} = Q^T\boldsymbol{b}$).

Solution:

a. We start with columns of $A(= [\mathbf{v}_1 \mathbf{v}_2])$ and we use Gram-Schmidt to find columns of $Q(= [\mathbf{q}_1 \mathbf{q}_2])$:

$$q_{1} = \frac{\mathbf{v}_{1}}{\|\mathbf{v}_{1}\|} = \frac{\begin{bmatrix} 1\\0\\1 \end{bmatrix}}{\|\begin{bmatrix} 0\\1\\1 \end{bmatrix}\|} = \begin{bmatrix} \frac{1}{\sqrt{2}}\\0\\\frac{1}{\sqrt{2}} \end{bmatrix}$$

and,

$$\mathbf{q}_{2} = \frac{\mathbf{v}_{2} - (\mathbf{q}_{1} \cdot \mathbf{v}_{2})\mathbf{q}_{1}}{\|\mathbf{v}_{2} - (\mathbf{q}_{1} \cdot \mathbf{v}_{2})\mathbf{q}_{1}\|} = \frac{\begin{bmatrix} 0\\1\\1 \end{bmatrix} - \begin{pmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}}\\0\\\frac{1}{\sqrt{2}} \end{bmatrix} \cdot \begin{bmatrix} 0\\1\\1 \end{bmatrix} \end{pmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}}\\0\\\frac{1}{\sqrt{2}} \end{bmatrix}}{\begin{bmatrix} 0\\1\\1 \end{bmatrix} - \begin{pmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}}\\0\\\frac{1}{\sqrt{2}} \end{bmatrix} \cdot \begin{bmatrix} 0\\1\\1 \end{bmatrix} \end{pmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}}\\0\\\frac{1}{\sqrt{2}} \end{bmatrix} \|} = \frac{\begin{bmatrix} -\frac{1}{2}\\1\\\frac{1}{2} \end{bmatrix}}{\begin{bmatrix} -\frac{1}{2}\\1\\\frac{1}{2} \end{bmatrix}} = \sqrt{\frac{2}{3}} \begin{bmatrix} -\frac{1}{2}\\1\\\frac{1}{2} \end{bmatrix}} = \begin{bmatrix} -\frac{1}{\sqrt{6}}\\\frac{2}{\sqrt{6}}\\\frac{1}{\sqrt{6}} \end{bmatrix}$$

Hence,

2.

$$Q = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\ 0 & \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \end{bmatrix}$$

We have:

$$R = Q^T A = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} \sqrt{2} & \frac{1}{\sqrt{2}} \\ 0 & \frac{3}{\sqrt{6}} \end{bmatrix}$$

b. We have to solve $R\hat{\mathbf{x}} = Q^T \mathbf{b}$:

$$\begin{bmatrix} \sqrt{2} & \frac{1}{\sqrt{2}} \\ 0 & \frac{3}{\sqrt{6}} \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} \end{bmatrix}$$

Therefore, $\widehat{\mathbf{x}} = \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix}$. **a.** Compare det $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and the "row flipped" determinant det $\begin{bmatrix} 3 & 4 \\ 1 & 2 \end{bmatrix}$.

Solution:

a. We have:

$$\det(\begin{bmatrix} 1 & 2\\ 3 & 4 \end{bmatrix}) = 1.4 - 2.3 = -2$$

and,

$$\det(\begin{bmatrix} 3 & 4\\ 1 & 2 \end{bmatrix}) = 3.2 - 4.1 = 2$$

So, $det(\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}) = -det(\begin{bmatrix} 3 & 4 \\ 1 & 2 \end{bmatrix})$. This agrees with the fact that we know that the interchange of two rows changes the sign of the determinant.

b. We transform A into an upper triangular matrix using row operations:

$$A = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{R_1 \leftrightarrow R_5, R_2 \leftrightarrow R_4} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Since we swap rows twice, we have:

$$\det(A) = -(-\det(\begin{bmatrix} 1 & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 0 & 1 \end{bmatrix})) = 1$$

c. We transform A into an upper triangular matrix using row operations:

$$A = \begin{bmatrix} 1 & 1 & 4 \\ 2 & 2 & 5 \\ 3 & 3 & 6 \end{bmatrix} \xrightarrow{R_2 \to R_2 - 2R_1, R_3 \to R_3 - 3R_1} \begin{bmatrix} 1 & 1 & 4 \\ 0 & 0 & -3 \\ 0 & 0 & -6 \end{bmatrix}$$

Since the row operations that we used do not change the value of the determinant, we have:

$$\det(A) = \det\left(\begin{bmatrix} 1 & 1 & 4\\ 0 & 0 & -3\\ 0 & 0 & -6 \end{bmatrix}\right) = 1.0.(-6) = 0$$

d. We transform A into an upper triangular matrix using row operations:

$$A = \begin{bmatrix} 1 & 4 & 5 \\ 2 & 5 & 7 \\ 3 & 6 & 9 \end{bmatrix} \xrightarrow{R_2 \to R_2 - 2R_1, R_3 \to R_3 - 3R_1} \begin{bmatrix} 1 & 4 & 5 \\ 0 & -3 & -3 \\ 0 & -6 & -6 \end{bmatrix} \xrightarrow{R_3 \to R_3 - 2R_2} \begin{bmatrix} 1 & 4 & 5 \\ 0 & -3 & -3 \\ 0 & 0 & 0 \end{bmatrix}$$

Since the row operations that we used do not change the value of the determinant, we have:

$$\det(A) = \det\left(\begin{bmatrix} 1 & 4 & 5\\ 0 & -3 & -3\\ 0 & 0 & 0 \end{bmatrix}\right) = 0$$

- **e.** (i) $\det(BA^T) = \det(B) \det(A^T) = \det(B) \det(A) = -2,$ (ii) $\det(BAB^{-1}) = \det(B) \det(A) \det(B^{-1}) = \det(B) \det(A) \frac{1}{\det(B)} = \det(A) = 2,$ (iii) $\det(A^{-1}) = \frac{1}{\det(A)} = \frac{1}{2}.$ **f.** We have:

$$\det(A) = 3\det\begin{pmatrix} 3 & 2\\ 1 & 1 \end{pmatrix} - 1\det\begin{pmatrix} 1 & 2\\ 1 & 1 \end{pmatrix} + 3\det\begin{pmatrix} 1 & 2\\ 3 & 2 \end{pmatrix} = 3.1 - 1.(-1) + 3.(-4) = -8$$

3. **a.** Someone tells you that det is linear, so det(3A) = 3 det(A). What do you answer? (What about det $(3 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix})$? If A is a 3 × 3 matrix, and det(A) = 2 what is det(3A)?) **b.** Somebody tells you that the matrix

$$A = \begin{bmatrix} 1 & 2 & -2 & 0 \\ 2 & 3 & -4 & 0 \\ -1 & -2 & 0 & 0 \\ 0 & 2 & 5 & 0 \end{bmatrix}$$

is invertible. What do you say?

c. Let

$$A = \begin{bmatrix} 1 & 2 & -2 & 0 \\ 2 & 3 & -4 & 1 \\ -1 & -2 & 0 & 2 \\ 0 & 2 & 5 & 3 \end{bmatrix}.$$

Calculate det(A). Is A invertible?

d. Let A be a
$$3 \times 3$$
 matrix so that $A \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} = 0$. What is $det(A)$.

Solution:

- **a.** In general, if A is a $n \times n$ matrix then $det(3A) = 3^n det(A)$. In particular, if A is a 3×3 matrix, and det(A) = 2 then det $(3A) = 3^3 det(A) = 27.2 = 54$. Hence, if det(3A) = 3 det(A), then either n = 1 (i.e., A is a 1×1 matrix) or det A = 0. Otherwise, the claim that det(3A) = 3 det(A) is false.
- **b.** Since A has a column of zeros, det(A) = 0. In other words, A is not invertible. We should tell the person to review their linear algebra.

c. We transform A into an upper triangular matrix using row operations:

$$A = \begin{bmatrix} 1 & 2 & -2 & 0 \\ 2 & 3 & -4 & 1 \\ -1 & -2 & 0 & 2 \\ 0 & 2 & 5 & 3 \end{bmatrix} \xrightarrow{R_2 \to R_2 - 2R_1, R_3 \to R_3 + R_1} \begin{bmatrix} 1 & 2 & -2 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & -2 & 2 \\ 0 & 2 & 5 & 3 \end{bmatrix}$$
$$\xrightarrow{R_4 \to R_4 + 2R_3, R_4 \to R_4 + 5/2R_1} \begin{bmatrix} 1 & 2 & -2 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & -2 & 2 \\ 0 & 0 & 0 & 10 \end{bmatrix}$$

Since the row operations that we used do not change the value of the determinant, we have:

$$\det(A) = \det\left(\begin{bmatrix} 1 & 2 & -2 & 0\\ 0 & -1 & 0 & 1\\ 0 & 0 & -2 & 2\\ 0 & 0 & 0 & 10 \end{bmatrix}\right) = 20$$

A is invertible since $det(A) \neq 0$.

d. Since $A\mathbf{x} = 0$ has a non-zero solution, A is not invertible, i.e., det(A) = 0.

4. Reading through your favorite linear algebra textbook, you find the following interesting statement: if the columns of A are independent, then the orthogonal projection onto ColA has projection matrix $A(A^T A)^{-1} A^T$.

- **a.** How does this formula simplify in the case when A has orthonormal columns?
- **b.** Let $Q = \begin{bmatrix} 1 & 0 \\ 0 & \frac{3}{5} \\ 0 & -\frac{4}{5} \end{bmatrix}$. What is the projection matrix corresponding to the orthogonal

projection onto Col(Q)?

c. Let $Q = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{3}{5} & \frac{4}{5} \\ 0 & -\frac{4}{5} & \frac{3}{5} \end{bmatrix}$. What is the projection matrix corresponding to the orthogonal

projection onto Col(Q)? Explain why your answer is not surprising.

d. (optional) Can you explain the formula $A(A^TA)^{-1}A^T$ for the projection matrix using the normal equations for least squares?

Solution:

a. If A has orthonormal columns then $A^T A = I$. So the projection matrix is:

$$A(A^T A)^{-1} A^T = A A^T$$

b. Since Q has orthonormal columns, the projection matrix is:

$$QQ^{T} = \begin{bmatrix} 1 & 0 \\ 0 & \frac{3}{5} \\ 0 & -\frac{4}{5} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{3}{5} & -\frac{4}{5} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{9}{25} & -\frac{12}{25} \\ 0 & -\frac{12}{25} & \frac{16}{25} \end{bmatrix}$$

c. Q has orthonormal columns and is square, so is orthogonal and satisfies $Q^{-1} = Q^T$. Therefore, the projection matrix QQ^T is equal to I. Explanation: since the columns of Q are linearly independent and Q has 3 columns,

the columns of Q form a basis for \mathbb{R}^3 . In other words, $\operatorname{Col}(Q) = \mathbb{R}^3$ and projection of each vector in \mathbb{R}^{3} onto $\operatorname{Col}(Q)$ is itself, i.e., the projection matrix is I.

5. True or False? Justify your answers!

a. Let Q be a 3×3 orthogonal matrix. Then det(Q) = 1.

- **b.** If det(A) = det(B) = 0 then det(A + B) = 0.
- **c.** We say A and B ($n \times n$ matrices) are similar if $A = DBD^{-1}$ for an invertible matrix D. Let A and B be similar matrices, then det(A) = det(B).
- **d.** Let A and B be 3×3 matrices. If det(A) = det(B) then A and B are similar. [Note: number of pivots in DBD^{-1} is equal to the number of pivots in B. (Why?) Use this fact to find a counter example.]
- **e.** Let A be a 3×3 matrix so that det(A) = 0. Then $A\mathbf{x} = \mathbf{b}$ has exactly one solution for each vector \mathbf{b} .
- **f.** Let A be a 3×3 matrix so that det(A) = 9. Then det(2A) = 18.
- **g.** Let R be a 2×3 matrix. Then $det(R^T R) = 0$.
- **h.** Let R be a 2 × 3 matrix. Then $det(RR^T) = 0$.

Solution:

a. False, we have $QQ^T = I$ so $\det(Q) \det(Q^T) = \det(Q)^2 = \det(I) = 1$. Hence, $\det(Q) = 1$ or -1 but it is not necessarily equal to 1 or necessarily equal to -1. Consider the following examples:

$$Q = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad Q = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 \\ 0 \end{bmatrix} \text{ and } B = \begin{bmatrix} 0 & 0 \end{bmatrix}$$

b. False, consider $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$. **c.** True, we have:

$$\det(A) = \det(DBD^{-1}) = \det(D)\det(B)\det(D^{-1}) = \det(D)\det(B)\frac{1}{\det(D)} = \det(B)$$

d. False, consider $A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. Then the number of pivots in

 DBD^{-1} is 1 but the number of pivots in A is equal to 2. Thus, it is not possible to find D so that $A = DBD^{-1}$.

- **e.** False, we have that A is invertible if and only if $A\mathbf{x} = \mathbf{b}$ has exactly one solution for each vector **b**.
- **f.** False, $det(2A) = 2^3 det(A) = 72$.
- **g.** True, the rank of $R^T R$ is at most the rank of R (why?), i.e., it is at most 2. $R^T R$ is a 3×3 matrix with rank at most 2, so it is not invertible. Therefore, $\det(R^T R) = 0$.
- **h.** False, consider $R = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$.

6. Let f be a function with period 2π that satisfies f(x) = x on $[-\pi, \pi)$. Find the Fourier series of f.

Solution: We have to find coefficients a_i and b_i so that:

$$f(x) = a_0 + a_1 \cos(x) + b_1 \sin(x) + a_2 \cos(2x) + b_2 \sin(2x) + \dots$$

We have, for $i \neq 0$:

$$a_{i} = \frac{\int_{-\pi}^{\pi} f(x) \cos(ix) dx}{\int_{-\pi}^{\pi} \cos^{2}(ix) dx} = \frac{\int_{-\pi}^{\pi} x \cos(ix) dx}{\int_{-\pi}^{\pi} \frac{1 - \cos(2ix)}{2} dx} = \frac{\frac{x \sin(ix)}{i} |_{-\pi}^{\pi} - \int_{-\pi}^{\pi} \frac{\sin(ix)}{i} dx}{\int_{-\pi}^{\pi} \frac{1 - \cos(2ix)}{2} dx} = 0$$

Also,

$$a_0 = \int_{-\pi}^{\pi} f(x) dx = \int_{-\pi}^{\pi} x dx = 0$$

In general, whenever we have an odd function (f(-x) = -f(x)) then the a_i 's are all zero. We have:

$$b_{i} = \frac{\int_{-\pi}^{\pi} f(x) \sin(ix) dx}{\int_{-\pi}^{\pi} \sin^{2}(ix) dx} = \frac{\int_{-\pi}^{\pi} x \sin(ix) dx}{\int_{-\pi}^{\pi} \frac{1 + \cos(2ix)}{2} dx} = \frac{-\frac{x \cos(ix)}{i} |_{-\pi}^{\pi} - \int_{-\pi}^{\pi} -\frac{\cos(ix)}{i} dx}{\int_{-\pi}^{\pi} \frac{1 + \cos(2ix)}{2} dx} = \frac{-\frac{2\pi}{i} \cos(i\pi)}{\pi} = -\frac{2\cos(i\pi)}{i} = \frac{2}{i} (-1)^{i+1}$$

Note that $\int_{-\pi}^{\pi} \cos(ix) dx = \int_{-\pi}^{\pi} \sin(ix) dx = 0$. In summary:

$$f(x) = 2\sin(x) - \sin(2x) + \frac{2}{3}\sin(3x) - \frac{2}{4}\sin(4x) + \frac{2}{5}\sin(5x) - \dots$$