Preparation problems for the discussion sections on November 11th and 13th

1. Let
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$
.
a. Find the QR decomposition of A: write $A = QR$ where Q is a matrix with orthonormal columns and R is an upper triangular matrix.
b. Let $\mathbf{b} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$. Use the QR decomposition of A to find the least squares solution of $A\widehat{\mathbf{x}} = \mathbf{b}$ (by solving $R\widehat{\mathbf{x}} = Q^T\mathbf{b}$).
2. a. Compare det $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and the "row flipped" determinant det $\begin{bmatrix} 3 & 4 \\ 1 & 2 \end{bmatrix}$.
b. If $A = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}$, what is det(A)?
c. If $A = \begin{bmatrix} 1 & 4 & 5 \\ 2 & 5 & 7 \\ 3 & 6 & 9 \\ \end{bmatrix}$, what is det(A)?
d. If $A = \begin{bmatrix} 1 & 4 & 5 \\ 2 & 5 & 7 \\ 3 & 6 & 9 \\ \end{bmatrix}$, what is det(A)?
e. If A, B are 3×3 matrices with det(A) = 2, det(B) = -1, calculate
(i) det(BA^T),
(ii) det(BA^T),
(iii) det(A^{-1}).
f. If $A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 1 & 1 & 3 \end{bmatrix}$, find det(A) by expanding along the last column.

a. Someone tells you that det is linear, so det(3A) = 3 det(A). What do you answer? (What about det(3 \$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\$)? If A is a 3 × 3 matrix, and det(A) = 2 what is det(3A)?) **b.** Somebody tells you that the matrix

$$A = \begin{bmatrix} 1 & 2 & -2 & 0 \\ 2 & 3 & -4 & 0 \\ -1 & -2 & 0 & 0 \\ 0 & 2 & 5 & 0 \end{bmatrix}$$

is invertible. What do you say?

 $\mathbf{c.} \ Let$

$$A = \begin{bmatrix} 1 & 2 & -2 & 0 \\ 2 & 3 & -4 & 1 \\ -1 & -2 & 0 & 2 \\ 0 & 2 & 5 & 3 \end{bmatrix}.$$

Calculate det(A). Is A invertible?

d. Let A be a 3×3 matrix so that $A \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} = 0$. What is det(A).

4. Reading through your favorite linear algebra textbook, you find the following interesting statement: if the columns of A are independent, then the orthogonal projection onto ColA has projection matrix $A(A^T A)^{-1} A^T$.

a. How does this formula simplify in the case when A has orthonormal columns?

b. Let $Q = \begin{bmatrix} 1 & 0 \\ 0 & \frac{3}{5} \\ 0 & -\frac{4}{5} \end{bmatrix}$. What is the projection matrix corresponding to the orthogonal

c. Let $Q = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{3}{5} & \frac{4}{5} \\ 0 & -\frac{4}{5} & \frac{3}{5} \end{bmatrix}$. What is the projection matrix corresponding to the orthogonal

projection onto Col(Q)? Explain why your answer is not surprising.

- **d.** (optional) Can you explain the formula $A(A^TA)^{-1}A^T$ for the projection matrix using the normal equations for least squares?
- **5.** True or False? Justify your answers!
 - **a.** Let Q be a 3×3 orthogonal matrix. Then det(Q) = 1.
 - **b.** If det(A) = det(B) = 0 then det(A + B) = 0.
 - c. We say A and B ($n \times n$ matrices) are similar if $A = DBD^{-1}$ for an invertible matrix D. Let A and B be similar matrices, then det(A) = det(B).
 - **d.** Let A and B be 3×3 matrices. If det(A) = det(B) then A and B are similar. [Note: number of pivots in DBD^{-1} is equal to the number of pivots in B. (Why?) Use this fact to find a counter example.]
 - **e.** Let A be a 3×3 matrix so that det(A) = 0. Then $A\mathbf{x} = \mathbf{b}$ has exactly one solution for each vector **b**.
 - **f.** Let A be a 3×3 matrix so that det(A) = 9. Then det(2A) = 18.
 - **g.** Let R be a 2×3 matrix. Then $det(R^T R) = 0$.
 - **h.** Let R be a 2×3 matrix. Then $det(RR^T) = 0$.

6. Let f be a function with period 2π that satisfies f(x) = x on $(-\pi, \pi]$. Find the Fourier series of f.