Preparation problems for the discussion sections on November 18th and 20th

1. For each of the following matrices, determine the eigenvalues of the matrix and for each eigenvalue, determine (a basis for) the eigenspace that is associated to that eigenvalue.

a. $\begin{bmatrix} 4 & 0 & -2 \\ 1 & 1 & 2 \\ 0 & 0 & 2 \end{bmatrix}$, **b.** $\begin{bmatrix} 3 & 4 \\ 4 & -3 \end{bmatrix}$, **c.** $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$.

Solution:

a. For instance, by expanding along the second column, we find that

det
$$\begin{bmatrix} 4 - \lambda & 0 & -2 \\ 1 & 1 - \lambda & 2 \\ 0 & 0 & 2 - \lambda \end{bmatrix} = (2 - \lambda)(1 - \lambda)(4 - \lambda).$$

Hence, the eigenvalues of A are 2, 4, and 1. For $\lambda = 2$:

$$\begin{bmatrix} 2 & 0 & -2 \\ 1 & -1 & 2 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{R2 \to R2 - 1/2R1, R1 \to 1/2R1, R2 \to -R2} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -3 \\ 0 & 0 & 0 \end{bmatrix}$$

Hence, the corresponding eigenspace is span $\left\{ \begin{bmatrix} 1\\3\\1 \end{bmatrix} \right\}$. For $\lambda = 4$:

$$\begin{bmatrix} 0 & 0 & -2\\ 1 & -3 & 2\\ 0 & 0 & -2 \end{bmatrix} \xrightarrow{R2 \to R2 + R3, R1 \to R1 - R3, R3 \to -1/2R2} \begin{bmatrix} 0 & 0 & 0\\ 1 & -3 & 0\\ 0 & 0 & 1 \end{bmatrix}$$

Hence, the corresponding eigenspace is span $\left\{ \begin{bmatrix} 3\\1\\0 \end{bmatrix} \right\}$.

For $\lambda = 1$:

$$\begin{bmatrix} 3 & 0 & -2 \\ 1 & 0 & 2 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{R2 \to R2 - 2R3, R1 \to R1 + 2R3, R1 \to R1 - 3R2} \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Hence, the corresponding eigenspace is span $\left\{ \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\}$.

b. We have:

$$\det \begin{bmatrix} 3-\lambda & 4\\ 4 & -3-\lambda \end{bmatrix} = (3-\lambda)(-3-\lambda) - 16 = \lambda^2 - 25 = (\lambda-5)(\lambda+5)$$

Hence, the eigenvalues of A are 5 and -5. For $\lambda = 5$:

$$\begin{bmatrix} -2 & 4\\ 4 & -8 \end{bmatrix} \xrightarrow{R2 \to R2 + 2R1, R1 \to -1/2R1} \begin{bmatrix} 1 & -2\\ 0 & 0 \end{bmatrix}$$

Hence, the corresponding eigenspace is span $\left\{ \begin{bmatrix} 2\\1 \end{bmatrix} \right\}$. For $\lambda = -5$: $\begin{bmatrix} 8 & 4\\4 & 2 \end{bmatrix} \xrightarrow{R2 \to R2 - 1/2R1, R1 \to 1/8R1} \begin{bmatrix} 1 & \frac{1}{2}\\0 & 0 \end{bmatrix}$ Hence, the corresponding eigenspace is span $\left\{ \begin{bmatrix} -1\\2 \end{bmatrix} \right\}$.

c. We have:

$$\det \begin{bmatrix} 1-\lambda & 1 & 1\\ 1 & 1-\lambda & 1\\ 1 & 1 & 1-\lambda \end{bmatrix} = (1-\lambda)((1-\lambda)(1-\lambda)-1) - (-\lambda) + (1-(1-\lambda)))$$
$$= (1-\lambda)(-\lambda)(2-\lambda) + 2\lambda = -\lambda((1-\lambda)(2-\lambda)-2) = \lambda^2(3-\lambda)$$

Hence, the eigenvalues of A are 0 and 3. For $\lambda = 0$:

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \xrightarrow{R2 \to R2 - R1, R3 \to R3 - R1} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Hence, the corresponding eigenspace is span $\left\{ \begin{array}{c} -1\\0\\1 \end{array} \right\}, \begin{array}{c} -1\\1\\0\\1 \end{array} \right\}.$

For
$$\lambda = 3$$
:

$$\begin{bmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{bmatrix} \xrightarrow{R_1 \leftrightarrow R_3, R_2 \to R_2 - R_1, R_3 \to R_3 + 2R_1, R_3 \to R_3 + R_2} \begin{bmatrix} 1 & 1 & -2 \\ 0 & -3 & 3 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{R_2 \to -1/3R_2, R_1 \to R_1 - R_2} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$(\begin{bmatrix} 1 \\ 1 \end{bmatrix})$$

Hence, the corresponding eigenspace is span $\left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}$.

2. Let

$$A = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 3 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 3 \end{bmatrix} \quad C = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 3 \end{bmatrix}$$

Determine the eigenvalues of A, B, C and, for each eigenvalue, determine the eigenspace that is associated to that eigenvalue.

Solution: For A, we have:

$$\det \begin{bmatrix} 2-\lambda & 1 & 0 & 0\\ 0 & 2-\lambda & 1 & 0\\ 0 & 0 & 2-\lambda & 1\\ 0 & 0 & 0 & 3-\lambda \end{bmatrix} = (2-\lambda)^3 (3-\lambda)$$

Hence, the eigenvalues of A are 2 and 3. For $\lambda = 2$:

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R4 \to R4 - R3} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Hence, the corresponding eigenspace is span $\left\{ \begin{array}{c} 1\\0\\0 \end{array} \right\}$.

For

For
$$\lambda = 3$$
:

$$\begin{bmatrix}
-1 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & -1 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix}$$
Hence, the corresponding eigenspace is span $\left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \right\}$.

For B, we have:

$$\det \begin{bmatrix} 2-\lambda & 0 & 0 & 0\\ 0 & 2-\lambda & 1 & 0\\ 0 & 0 & 2-\lambda & 1\\ 0 & 0 & 0 & 3-\lambda \end{bmatrix} = (2-\lambda)^3 (3-\lambda)$$

Hence, the eigenvalues of B are 2 and 3. For $\lambda = 2$:

 $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R4 \to R4 - R3} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ Hence, the corresponding eigenspace is span $\left\{ \begin{bmatrix} 1\\0\\0\\0\end{bmatrix}, \begin{bmatrix} 0\\1\\0\\0\end{bmatrix} \right\}$. For $\lambda = 3$: $\begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ Hence, the corresponding eigenspace is span $\left\{ \begin{array}{c} 0\\1\\1\\1\\1 \end{array} \right\}$.

For C, we have:

$$\det \begin{bmatrix} 2-\lambda & 0 & 0 & 0\\ 0 & 2-\lambda & 0 & 0\\ 0 & 0 & 2-\lambda & 1\\ 0 & 0 & 0 & 3-\lambda \end{bmatrix} = (2-\lambda)^3(3-\lambda)$$

Hence, the eigenvalues of C are 2 and 3. For $\lambda = 2$:

$$\begin{cases} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ \end{cases} \xrightarrow{R4 \to R4 - R3} \begin{cases} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ \end{cases}$$
Hence, the corresponding eigenspace is span
$$\begin{cases} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ \end{bmatrix} \right \}.$$
For $\lambda = 3$:
$$\begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
Hence, the corresponding eigenspace is span
$$\begin{cases} \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \\ \end{bmatrix} \right \}.$$

3. (This question is not yet relevant for the third midterm exam.) Let

$$A = \left[\begin{array}{rr} 1 & 1 \\ 1 & 1 \end{array} \right].$$

Find a diagonal matrix D and an invertible matrix P such that $A = PDP^{-1}$.

Solution: We have to find the eigenvalues and corresponding eigenspaces. We have:

$$\det \begin{bmatrix} 1-\lambda & 1\\ 1 & 1-\lambda \end{bmatrix} = (1-\lambda)(1-\lambda) - 1 = -\lambda(2-\lambda)$$

Hence, the eigenvalues of A are 0 and 2. For $\lambda = 0$:

$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \xrightarrow{R2 \to R2 - R1} \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$

Hence, the corresponding eigenspace is span $\left\{ \begin{bmatrix} -1\\ 1 \end{bmatrix} \right\}$.

For $\lambda = 2$:

$$\begin{bmatrix} -1 & 1\\ 1 & -1 \end{bmatrix} \xrightarrow{R2 \to R2 + R1, R1 \to -R1} \begin{bmatrix} 1 & -1\\ 0 & 0 \end{bmatrix}$$

Hence, the corresponding eigenspace is span $\left\{ \begin{bmatrix} 1\\1 \end{bmatrix} \right\}$.

The columns of P are (linearly independent) eigenvectors of A and D is the diagonal matrix with eigenvalues of A on the main diagonal in the appropriate order (corresponding to columns of P). Therefore:

$$P = \begin{bmatrix} -1 & 1\\ 1 & 1 \end{bmatrix} \quad D = \begin{bmatrix} 0 & 0\\ 0 & 2 \end{bmatrix}$$