The geometry of linear equations

Adding and scaling vectors

Example 1. We have already encountered matrices such as

$$\begin{bmatrix} 1 & 4 & 2 & 3 \\ 2 & -1 & 2 & 2 \\ 3 & 2 & -2 & 0 \end{bmatrix}.$$

Each column is what we call a (column) vector.

In this example, each column vector has 3 entries and so lies in \mathbb{R}^3 .

Example 2. A fundamental property of vectors is that vectors of the same kind can be **added** and **scaled**.

$$\begin{bmatrix} 1\\2\\3 \end{bmatrix} + \begin{bmatrix} 4\\-1\\2 \end{bmatrix} = , \qquad 7 \cdot \begin{bmatrix} x_1\\x_2\\x_3 \end{bmatrix} = .$$

Example 3. (Geometric description of \mathbb{R}^2) A vector $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ represents the point (x_1, x_2) in the plane.

Given $\boldsymbol{x} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ and $\boldsymbol{y} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, graph \boldsymbol{x} , \boldsymbol{y} , $\boldsymbol{x} + \boldsymbol{y}$, $3\boldsymbol{x}$.

Adding and scaling vectors, the most general thing we can do is:

Definition 4. Given vectors $v_1, v_2, ..., v_m$ in \mathbb{R}^n and scalars $c_1, c_2, ..., c_m$, the vector

 $c_1 \boldsymbol{v}_1 + c_2 \boldsymbol{v}_2 + \ldots + c_m \boldsymbol{v}_m$

• $\frac{1}{3}v_2$, • 0

is a linear combination of $\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_m$.

The scalars $c_1, ..., c_m$ are the **coefficients** or weights.

Example 5. Linear combinations of v_1, v_2, v_3 include:

- $3 m{v}_1 m{v}_2 + 7 m{v}_3$,
- $oldsymbol{v}_2 + oldsymbol{v}_3$,

Example 6. Express $\begin{bmatrix} 1\\5 \end{bmatrix}$ as a linear combination of $\begin{bmatrix} 2\\1 \end{bmatrix}$ and $\begin{bmatrix} -1\\1 \end{bmatrix}$.

Solution. We have to find c_1 and c_2 such that ...

The row and column picture

Example 7. We can think of the linear system

$$2x - y = 1$$
$$x + y = 5$$

in two different geometric ways.

Row picture.

Each equation defines a line in \mathbb{R}^2 .

Which points lie on the intersection of these lines?

Column picture.

The system can be written as $x \begin{bmatrix} 2 \\ 1 \end{bmatrix} + y \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$.

Which linear combinations of $\begin{bmatrix} 2\\1 \end{bmatrix}$ and $\begin{bmatrix} -1\\1 \end{bmatrix}$ produce $\begin{bmatrix} 1\\5 \end{bmatrix}$?

This example has the unique solution x = 2, y = 3.

- (2,3) is the (only) intersection of the two lines 2x y = 1 and x + y = 5.
- $2\begin{bmatrix} 2\\1 \end{bmatrix} + 3\begin{bmatrix} -1\\1 \end{bmatrix}$ is the (only) linear combination producing $\begin{bmatrix} 1\\5 \end{bmatrix}$.

Example 8. Consider the vectors

$$\boldsymbol{a}_1 = \begin{bmatrix} 1\\0\\3 \end{bmatrix}, \quad \boldsymbol{a}_2 = \begin{bmatrix} 4\\2\\14 \end{bmatrix}, \quad \boldsymbol{a}_3 = \begin{bmatrix} 3\\6\\10 \end{bmatrix}, \quad \boldsymbol{b} = \begin{bmatrix} -1\\8\\-5 \end{bmatrix}.$$

Determine if **b** is a linear combination of a_1, a_2, a_3 .

Solution. Vector **b** is a linear combination of a_1, a_2, a_3 if we can find weights x_1, x_2, x_3 such that:

This vector equation corresponds to the linear system:

Corresponding augmented matrix:

Row reduction to echelon form:

Hence:

Example 9. In the previous example, express **b** as a linear combination of a_1, a_2, a_3 . Solution.

Summary

A vector equation

 $x_1 \boldsymbol{a}_1 + x_2 \boldsymbol{a}_2 + \ldots + x_m \boldsymbol{a}_m = \boldsymbol{b}$

has the same solution set as the linear system with augmented matrix

In particular, **b** can be generated by a linear combination of $a_1, a_2, ..., a_m$ if and only if there is a solution to this linear system.

The span of a set of vectors

Definition 10. The **span** of vectors $v_1, v_2, ..., v_m$ is the set of all their linear combinations. We denote it by $\text{span}\{v_1, v_2, ..., v_m\}$.

In other words, $\mathrm{span}\{m{v}_1,m{v}_2,...,m{v}_m\}$ is the set of all vectors of the form

 $c_1\boldsymbol{v}_1+c_2\boldsymbol{v}_2+\ldots+c_m\boldsymbol{v}_m,$

where $c_1, c_2, ..., c_m$ are scalars.

Example 11.

- (a) Describe span $\left\{ \begin{bmatrix} 2\\1 \end{bmatrix} \right\}$ geometrically.
- (b) Describe span $\left\{ \begin{bmatrix} 2\\1 \end{bmatrix}, \begin{bmatrix} 4\\1 \end{bmatrix} \right\}$ geometrically.

(c) Describe span $\left\{ \begin{bmatrix} 2\\1 \end{bmatrix}, \begin{bmatrix} 4\\2 \end{bmatrix} \right\}$ geometrically.

A single (nonzero) vector always spans a line, two vectors v_1, v_2 usually span a plane but it could also be just a line (if $v_2 = \alpha v_1$).

We will come back to this when we discuss dimension and linear independence.

Example 12. Is span $\left\{ \begin{bmatrix} 2\\ -1\\ 1 \end{bmatrix}, \begin{bmatrix} 4\\ -2\\ 1 \end{bmatrix} \right\}$ a line or a plane?

Solution.

Example 13. Consider

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 1 \\ 0 & 5 \end{bmatrix}, \qquad \boldsymbol{b} = \begin{bmatrix} 8 \\ 3 \\ 17 \end{bmatrix}.$$

Is b in the plane spanned by the columns of A?

Solution.

Conclusion and summary

- The span of vectors $a_1, a_2, ..., a_m$ is the set of all their linear combinations.
- Some vector **b** is in $\text{span}\{a_1, a_2, ..., a_m\}$ if and only if there is a solution to the linear system with augmented matrix



- Each solution corresponds to the weights in a linear combination of the $a_1, a_2, ..., a_m$ which gives **b**.
- This gives a second geometric way to think of linear systems!