
The inverse of a matrix

Example 1. The inverse of a real number a is denoted as a−1. For instance, 7−1=
1

7
and

7 · 7−1=7−1
· 7=1.

In the context of n×n matrix multiplication, the role of 1 is taken by the n×n identity
matrix

In=









1
1
�

1









.

Definition 2. An n×n matrix A is invertible if there is a matrix B such that

AB=BA= In.

In that case, B is the inverse of A and we write A−1=B.

Example 3. We already saw that elementary matrices are invertible.

•





1 0 0
2 1 0
0 0 1





−1

=

Note.

• The inverse of a matrix is unique. Why? So A−1 is well-defined.

• Do not write
A

B
. Why?

• If AB= I, then BA= I (and so A−1=B). Not easy to show at this stage.

Example 4. The matrix A=
[

0 1

0 0

]

is not invertible. Why?

Solution.
[

0 1
0 0

][

a b

c d

]

=

Example 5. Let A=
[

a b

c d

]

. If ad− bc� 0, then

A−1=
1

ad− bc

[

d −b

−c a

]

.
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Let’s check that:

Note.

• A 1× 1 matrix [ a ] is invertible� a� 0.

• A 2× 2 matrix

[

a b

c d

]

is invertible� ad− bc� 0.

We will encounter the quantities on the right again when we discuss determinants.

Theorem 6. Suppose A and B are invertible. Then:

• A−1 is invertible and (A−1)−1=A.

Why?

• AT is invertible and (AT)−1=(A−1)T .

• AB is invertible and (AB)−1=B−1A−1.

Why?

Solving systems using matrix inverse

Theorem 7. Let A be invertible. Then the system Ax = b has the unique solution
x=A−1

b.

Proof. �

Example 8. Solve
−7x1 +3x2 = 2
5x1 −2x2 = 1

using matrix inversion.

Solution. In matrix form Ax= b, this system is

Computing the inverse:

Hence, the solution is:

x=A−1
b=
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Recipe for computing the inverse

To solve Ax= b, we do row reduction on [ A b ].

To solve AX = I, we do row reduction on [ A I ].

To compute A−1:

• Form the augmented matrix [ A I ].

• Compute the reduced echelon form.

• If A is invertible, the result is of the form
[

I A−1
]

.

Example 9. Find the inverse of A=





2 0 0
−3 0 1
0 1 0



, if it exists.

Solution. By row reduction:

[ A I ]  
[

I A−1
]





2 0 0 1 0 0
−3 0 1 0 1 0
0 1 0 0 0 1



  









1 0 0
1

2
0 0

0 1 0 0 0 1

0 0 1
3

2
1 0









Example 10. Let’s do the previous example step by step.

Note. Here is another way to see why this algorithm works:

• Each row reduction corresponds to multiplying with an elementary matrix E:

[ A I ] [ E1A E1I ] [ E2E1A E2E1 ] 


• So at each step:

[ A I ] [ FA F ] with F =Er�E2E1

• If we manage to reduce [ A I ] to [ I F ], this means

FA= I and hence A−1=F .
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Conclusions

Theorem 11. Let A be an n × n matrix. Then the following statements are equiva-
lent: (i.e., for a given A, they are either all true or all false)

(a) A is invertible.

(b) A is row equivalent to In.

(c) A has n pivots. (Easy to check!)

(d) For every b, the system Ax= b has a unique solution.

Namely, x=A−1
b.

(e) There is a matrix B such that AB= In. (A has a “right inverse”.)

(f) There is a matrix C such that CA= In. (A has a “left inverse”.)

Note. Matrices that are not invertible are often called singular.

The book uses singular for n × n matrices that do not have n pivots. As we just saw, it doesn’t
make a difference.

Example 12. We now see at once that A=
[

0 1

0 0

]

is not invertible.

Why?
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