The inverse of a matrix

Example 1. The inverse of a real number *a* is denoted as a^{-1} . For instance, $7^{-1} = \frac{1}{7}$ and

 $7 \cdot 7^{-1} = 7^{-1} \cdot 7 = 1.$

In the context of $n \times n$ matrix multiplication, the role of 1 is taken by the $n \times n$ identity matrix

Definition 2. An $n \times n$ matrix A is **invertible** if there is a matrix B such that

$$AB = BA = I_n.$$

In that case, *B* is the **inverse** of *A* and we write $A^{-1} = B$.

Example 3. We already saw that elementary matrices are **invertible**.

• $\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}^{-1} =$

Note.

- The inverse of a matrix is unique. Why?
- Do not write $\frac{A}{B}$. Why?
- If AB = I, then BA = I (and so $A^{-1} = B$).

Example 4. The matrix $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ is not invertible. Why?

Solution.

$$\left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right] \left[\begin{array}{cc} a & b \\ c & d \end{array}\right] =$$

Example 5. Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. If $ad - bc \neq 0$, then

$$A^{-1} = \frac{1}{a d - b c} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

Armin Straub astraub@illinois.edu So A^{-1} is well-defined.

Not easy to show at this stage.

Let's check that:

Note.

- A 1×1 matrix [a] is invertible $\iff a \neq 0$.
- A 2 × 2 matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is invertible $\iff ad bc \neq 0$.

We will encounter the quantities on the right again when we discuss determinants.

Theorem 6. Suppose A and B are invertible. Then:

- A^{-1} is invertible and $(A^{-1})^{-1} = A$. Why?
- A^T is invertible and $(A^T)^{-1} = (A^{-1})^T$.
- AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$. Why?

Solving systems using matrix inverse

Theorem 7. Let A be invertible. Then the system Ax = b has the unique solution $x = A^{-1}b$.

Proof.

Example 8. Solve $\begin{array}{rrrr} -7x_1 & +3x_2 & = & 2\\ 5x_1 & -2x_2 & = & 1 \end{array}$ using matrix inversion.

Solution. In matrix form Ax = b, this system is

Computing the inverse:

Hence, the solution is:

$$x = A^{-1}b =$$

Recipe for computing the inverse

To solve $A\mathbf{x} = \mathbf{b}$, we do row reduction on $[A \mid \mathbf{b}]$.

To solve AX = I, we do row reduction on $\begin{bmatrix} A & I \end{bmatrix}$.

To compute A^{-1} :

- Form the augmented matrix [A | I].
- Compute the reduced echelon form.
- If A is invertible, the result is of the form $\begin{bmatrix} I & A^{-1} \end{bmatrix}$.

Example 9. Find the inverse of $A = \begin{bmatrix} 2 & 0 & 0 \\ -3 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$, if it exists.

Solution. By row reduction:

$$\begin{bmatrix} A & I \end{bmatrix} \rightsquigarrow \begin{bmatrix} I & A^{-1} \end{bmatrix}$$
$$\begin{bmatrix} 2 & 0 & 0 & 1 & 0 & 0 \\ -3 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 0 & 0 & \frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & \frac{3}{2} & 1 & 0 \end{bmatrix}$$

Example 10. Let's do the previous example step by step.

Note. Here is another way to see why this algorithm works:

• Each row reduction corresponds to multiplying with an elementary matrix *E*:

 $\left[\begin{array}{c|c} A & I \end{array} \right] \leadsto \left[\begin{array}{c|c} E_1A & E_1I \end{array} \right] \leadsto \left[\begin{array}{c|c} E_2E_1A & E_2E_1 \end{array} \right] \leadsto \ldots$

• So at each step:

 $[A \mid I] \rightsquigarrow [FA \mid F] \quad \text{with } F = E_r \cdots E_2 E_1$

• If we manage to reduce $[A \mid I]$ to $[I \mid F]$, this means

FA = I and hence $A^{-1} = F$.

Armin Straub astraub@illinois.edu

Conclusions

Theorem 11. Let A be an $n \times n$ matrix. Then the following statements are equivalent: (i.e., for a given A, they are either all true or all false)

- (a) A is invertible.
- (b) A is row equivalent to I_n .
- (c) A has n pivots.
- (d) For every **b**, the system Ax = b has a unique solution.
 - Namely, $\boldsymbol{x} = A^{-1}\boldsymbol{b}$.
- (e) There is a matrix B such that $AB = I_n$. (A has a "right inverse".)
- (f) There is a matrix C such that $CA = I_n$.

Note. Matrices that are not invertible are often called **singular**.

The book uses singular for $n \times n$ matrices that do not have n pivots. As we just saw, it doesn't make a difference.

Example 12. We now see at once that $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ is not invertible.

Why?

(Easy to check!)

A nas a right inverse".) (A has a "left inverse".)