
Application: finite differences

Let us apply linear algebra to the boundary value problem

−
d2u

dx2
= f(x), 06x6 1, u(0)=u(1)= 0.

f(x) is given, and the goal is to find u(x).

Physical interpretation: models steady-state temperature distribution in a bar (u(x) is temperature
at point x) under influence of an external heat source f(x) and with ends fixed at 0◦ (ice cube at
the ends?).

The boundary condition u(0)=u(1)= 0 makes the solution u(x) unique.

u(x)

x 1
We will approximate this problem as follows:

• replace u(x) by its values at equally spaced points in [0, 1]

u 0
=
0

u 1
=
u
(h
)

u 2
=
u
(2
h
)

u 3
=
u
(3
h
)

un
=
u
(n
h
)

un
+
1
=
0

. . .0 h 2h 3h nh 1

• approximate
d2u

dx2
at these points (finite differences)

• replace differential equation with linear equation at each point

• solve linear problem using Gaussian elimination

Finite differences

Finite differences for first derivative:

du

dx
≈

∆u

∆x
=

u(x+h)−u(x)

h

@

or u(x)− u(x−h)

h

@

or u(x+h)−u(x−h)

2h
symmetric and most accurate
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Finite differences for second derivative:

d2u

dx2
≈

u(x+h)− 2u(x)+u(x−h)

h2

the only symmetric choice involving only u(x), u(x±h)

Question 1. Why does this approximate
d2u

dx2
as h→ 0?

Setting up the linear equations

−
d2u

dx2
= f(x), 06x6 1, u(0)=u(1)= 0.

Using
d2

u

dx2
≈

u(x+h)− 2u(x)+ u(x−h)

h2
, we get:

u 0
=
0

u 1
=
u
(h
)

u 2
=
u
(2
h
)

u 3
=
u
(3
h
)

un
=
u
(n
h
)

un
+
1
=
0

. . .0 h 2h 3h nh 1

at x=h: −
u(2h)− 2u(h)+u(0)

h2
= f(h)

� 2u1− u2=h2f(h) (1)

at x=2h:
� (2)

at x=3h:
� (3)




at x=nh:
� (n)
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Example 2. In the case of six divisions (n=5), we get:













2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2













�

A













u1

u2

u3

u4

u5













�

x

=















h2f(h)

h2f(2h)

h2f(3h)

h2f(4h)

h2f(5h)















�

b

Such a matrix is called a band matrix. As we will see next, such matrices always have
a particularly simple LU decomposition

Gaussian elimination:
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This leads to the LU decomposition:

Now, given an f , we can solve for u1,
 , u5 by forward and back substitution.

Ax= b G

A=LU

Lc= b and Ux= c

LU decomposition vs matrix inverse

In many applications, we don’t just solve Ax= b for a single b, but for many different
b (think millions).

Note, for instance, that in our example of “steady-state temperature distribution in a bar” the matrix
A is always the same (it only depends on the kind of problem), whereas the vector b models the
external heat (and thus changes for each specific instance).

• That’s why the LU decomposition saves us from repeating lots of computation in
comparison with Gaussian elimination.

• What about computing A−1? [Not just here, using A−1 is a bad idea!]

Example 3. Using LU decomposition, we solve, for each b,




















1

−
1

2
1

−
2

3
1

−
3

4
1

−
4

5
1





















c= b,





















2 −1
3

2
−1
4

3
−1
5

4
−1
6

5





















x= c

by forward and backward substitution.

How many operations are needed in the n×n case?
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On the other hand,

A−1=
1

6













5 4 3 2 1
4 8 6 4 2
3 6 9 6 3
2 4 6 8 4
1 2 3 4 5













.

How many operations are needed to compute A−1
b?

Conclusions

• Large matrices met in applications usually are not random but have some structure
(such as band matrices).

• When solving linear equations, we do not (try to) compute A−1.

◦ It destroys structure in practical problems.

◦ As a result, it can be orders of magnitude slower,

◦ and require orders of magnitude more memory.

◦ It is also numerically unstable.

◦ LU decomposition can be adjusted to not have these drawbacks.
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