Application: finite differences

Let us apply linear algebra to the boundary value problem

—@:f(m) 0<z<1 u(0) =u(1)=0.
da? oo T
f(x) is given, and the goal is to find u(z).

Physical interpretation: models steady-state temperature distribution in a bar (u(z) is temperature
at point x) under influence of an external heat source f(x) and with ends fixed at 0° (ice cube at
the ends?).

The boundary condition %(0) =u(1) =0 makes the solution u(x) unique.
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We will approximate this problem as follows:
e replace u(z) by its values at equally spaced points in [0, 1]
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e approximate % at these points (finite differences)
e replace differential equation with linear equation at each point
e solve linear problem using Gaussian elimination
Finite differences
Finite differences for first derivative:
du _ Au  w(x+h)—u(z)
dr Az h
or u(x) —u(x —h)
N h
or u(x +h) —u(x —h)
a 2h
symmetric and most accurate
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Finite differences for second derivative:
d®>u _u(z+h)—2u(z)+u(z—h)
de2 — h2

the only symmetric choice involving only u(x), u(z £+ h)

2

Question 1. Why does this approximate % as h—07?

Setting up the linear equations

_@:f(x) 0<z<1 u(0) =u(1)=0.

dLE2 , AN

Using %% u(z+h) —212(290)+“($ —h), we get:
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at x = h: —ul2h) - 2Z§h) - f(h)

— 2u1——u2::h2f(h)

at x =2h:
—
at x =3h:
—
at x=nh:
s
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Example 2. In the case of six divisions (n=75), we get:

2 -1 U h?f(h)
-1 2 -1 Us h? f(2h)
-1 2 -1 uz | =| h*f(3h)

-1 2 -1 || w h? f(4h)

L -1 2 [ us | h2f(5h)

X T

Such a matrix is called a band matrix. As we will see next, such matrices always have
a particularly simple LU decomposition

Gaussian elimination:
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This leads to the LU decomposition:

Now, given an f, we can solve for wuq, ..., us by forward and back substitution.

Ax=0>b

A=LU

—

Le=b

and Uzx=c

‘ LU decomposition vs matrix inverse

In many applications, we don't just solve Ax =b for a single b, but for many different

b (think millions).

Note, for instance, that in our example of “steady-state temperature distribution in a bar”’ the matrix
A is always the same (it only depends on the kind of problem), whereas the vector b models the

external heat (and thus changes for each specific instance).

e That's why the LU decomposition saves us from repeating lots of computation in

comparison with Gaussian elimination.

e What about computing A~1?

[Not just here, using A~!is a bad idea!]

Example 3. Using LU decomposition, we solve, for each b,
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by forward and backward substitution.
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How many operations are needed in the n x n case?
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On the other hand,
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How many operations are needed to compute A~1'b?

Conclusions

e Large matrices met in applications usually are not random but have some structure
(such as band matrices).

e When solving linear equations, we do not (try to) compute A~".
o It destroys structure in practical problems.
o As a result, it can be orders of magnitude slower,
o and require orders of magnitude more memory.
o It is also numerically unstable.

o LU decomposition can be adjusted to not have these drawbacks.
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