Vector spaces and subspaces

We have already encountered **vectors** in \mathbb{R}^n . Now, we discuss the general concept of vectors.

In place of the space \mathbb{R}^n , we think of general vector spaces.

Definition 1. A vector space is a nonempty set V of elements, called vectors, which may be added and scaled (multiplied with real numbers).

The two operations of addition and scalar multiplication must satisfy the following *axioms* for all u, v, w in V, and all scalars c, d.

(a)
$$\boldsymbol{u} + \boldsymbol{v}$$
 is in V

(b) $\boldsymbol{u} + \boldsymbol{v} = \boldsymbol{v} + \boldsymbol{u}$

(c) (u+v)+w=u+(v+w)

(d) there is a vector (called the **zero vector**) **0** in V such that u + 0 = u for all u in V

- (e) there is a vector -u such that u + (-u) = 0
- (f) $c\mathbf{u}$ is in V

(g)
$$c(\boldsymbol{u} + \boldsymbol{v}) = c\boldsymbol{u} + c\boldsymbol{v}$$

(h)
$$(c+d)\boldsymbol{u} = c\boldsymbol{u} + d\boldsymbol{u}$$

(i)
$$(cd)\boldsymbol{u} = c(d\boldsymbol{u})$$

(j) 1u = u

tl;dr — A **vector space** is a collection of vectors which can be added and scaled; subject to the usual rules you would hope for.

namely: associativity, commutativity, distributivity

Example 2. Convince yourself that $M_{2\times 2} = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a, b, c, d \text{ in } \mathbb{R} \right\}$ is a vector space.

Solution. In this context, the zero vector is $\mathbf{0} =$

Example 3. Let \mathbb{P}_n be the set of all polynomials of degree at most $n \ge 0$. Is \mathbb{P}_n a vector space?

Solution.

Example 4. Let V be the set of all polynomials of degree exactly 3. Is V a vector space?

Solution.

Example 5. Let V be the set of all functions $f: \mathbb{R} \to \mathbb{R}$. Is V a vector space?

Solution.

Subspaces

Definition 6. A subset W of a vector space V is a **subspace** if W is itself a vector space.

Since the rules like associativity, commutativity and distributivity still hold, we only need to check the following:

- $W \subseteq V$ is a subspace of V if
- W contains the zero vector **0**,
- W is closed under addition,
- W is closed under scaling.

(i.e. if $oldsymbol{u},oldsymbol{v}\in W$ then $oldsymbol{u}+oldsymbol{v}\in W$)

(i.e. if $oldsymbol{u}\in W$ and $c\in\mathbb{R}$ then $coldsymbol{u}\in W$)

Example 7. Is $W = \operatorname{span}\left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$ a subspace of \mathbb{R}^2 ?

Solution.

Example 8. Is
$$W = \left\{ \begin{bmatrix} a \\ 0 \\ b \end{bmatrix} : a, b \text{ in } \mathbb{R} \right\}$$
 a subspace of \mathbb{R}^3 ?

Solution.

Example 9. Is $W = \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$ a subspace of \mathbb{R}^2 ?

Solution.

Example 10. Is $W = \left\{ \begin{bmatrix} x \\ x+1 \end{bmatrix} : x \text{ in } \mathbb{R} \right\}$ a subspace of \mathbb{R}^2 ?

Solution.

Spans of vectors are subspaces

Review. The **span** of vectors $v_1, v_2, ..., v_m$ is the set of all their linear combinations. We denote it by span{ $v_1, v_2, ..., v_m$ }.

In other words, $\mathrm{span}\{\boldsymbol{v}_1, \boldsymbol{v}_2, ..., \boldsymbol{v}_m\}$ is the set of all vectors of the form

 $c_1\boldsymbol{v}_1+c_2\boldsymbol{v}_2+\ldots+c_m\boldsymbol{v}_m,$

where $c_1, c_2, ..., c_m$ are scalars.

Theorem 11. If $v_1, ..., v_m$ are in a vector space V, then span $\{v_1, ..., v_m\}$ is a subspace of V.

Example 12. Is
$$W = \left\{ \begin{bmatrix} a+3b\\2a-b \end{bmatrix} : a, b \text{ in } \mathbb{R} \right\}$$
 a subspace of \mathbb{R}^2 ?

Solution.

Example 13. Is $W = \left\{ \begin{bmatrix} -a & 2b \\ a+b & 3a \end{bmatrix} : a, b \text{ in } \mathbb{R} \right\}$ a subspace of $M_{2 \times 2}$, the space of 2×2 matrices?

Solution.

Practice problems

Example 14. Are the following vector spaces?

(a)
$$W_1 = \left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} : a + 3b = 0, 2a - c = 1 \right\}$$

(b)
$$W_2 = \left\{ \begin{bmatrix} a+c\\-2b\\b+3c\\c \end{bmatrix} : a, b, c \text{ in } \mathbb{R} \right\}$$

(c)
$$W_2 = \left\{ \left[\begin{array}{c} a \\ b \end{array} \right] : ab \ge 0 \right\}$$