Solving Ax = 0 and Ax = b

Null spaces

Definition 1. The **null space** of a matrix A is

 $\operatorname{Nul}(A) = \{ \boldsymbol{x} : A\boldsymbol{x} = 0 \}.$

In other words, if A is $m \times n$, then its null space consists of those vectors $\boldsymbol{x} \in \mathbb{R}^n$ which solve the **homogeneous** equation $A\boldsymbol{x} = 0$.

Theorem 2. If A is $m \times n$, then Nul(A) is a subspace of \mathbb{R}^n .

Proof. We need to show that Nul(A) is closed under addition and scalar multiplication:

Solving Ax = 0 yields an *explicit description* of Nul(A).

By that we mean a description as the span of some vectors.

Example 3. Find an explicit description of Nul(A) where

A =	3	6	6	3	9]
	6	12	13	0	3].

Solution.

Note. The number of vectors in the spanning set for Nul(A) as derived above (which is as small as possible) equals the number of free variables in Ax = 0.

Column spaces

Definition 4. The column space Col(A) of a matrix A is the span of the columns of A. If $A = [\mathbf{a}_1 \dots \mathbf{a}_n]$, then $Col(A) = span\{\mathbf{a}_1, \dots, \mathbf{a}_n\}$.

- In other words, **b** is in Col(A) if and only if Ax = b has a solution. Why?
- If A is $m \times n$, then $\operatorname{Col}(A)$ is a subspace of \mathbb{R}^m . Why?

Example 5. Find a matrix A such that $W = \operatorname{Col}(A)$ where

$$W = \left\{ \begin{bmatrix} 2x - y \\ 3y \\ 7x + y \end{bmatrix} : x, y \text{ in } \mathbb{R} \right\}.$$

Solution.

Col(A) and solutions to Ax = b

Theorem 6. Let x_p be a solution of the equation Ax = b.

Then every solution to Ax = b is of the form $x = x_p + x_n$, where x_n is a solution to the homogeneous equation Ax = 0.

- In other words, $\{ \boldsymbol{x} : A\boldsymbol{x} = \boldsymbol{b} \} = \boldsymbol{x}_p + \operatorname{Nul}(A)$.
- We often call \boldsymbol{x}_p a particular solution.

The theorem then says that every solution to $A\mathbf{x} = \mathbf{b}$ is the sum of a fixed chosen particular solution and some solution to $A\mathbf{x} = \mathbf{0}$.

Proof. Let x be another solution to Ax = b. Then:

Example 7. Let $A = \begin{bmatrix} 1 & 3 & 3 & 2 \\ 2 & 6 & 9 & 7 \\ -1 & -3 & 3 & 4 \end{bmatrix}$ and $b = \begin{bmatrix} 1 \\ 5 \\ 5 \end{bmatrix}$.

Using the RREF, find a parametric description of the solutions to Ax = b:

Every solution to Ax = b is therefore of the form:

Note. A convenient way to just find a particular solution is to set all free variables to zero.

Practice problems

- True or false?
 - The solutions to the equation Ax = b form a vector space.
 - The solutions to the equation Ax = 0 form a vector space.

Armin Straub astraub@illinois.edu **Example 8.** Find an explicit description of Nul(A) where

$$A = \left[\begin{array}{rrrr} 1 & 3 & 5 & 0 \\ 0 & 1 & 4 & -2 \end{array} \right].$$

Example 9. Is the given set W a vector space?

If possible, express W as the column or null space of some matrix A.

(a)
$$W = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} : 5x = y + 2z \right\}$$

(b) $W = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} : 5x - 1 = y + 2z \right\}$
(c) $W = \left\{ \begin{bmatrix} x \\ y \\ x + y \end{bmatrix} : x, y \text{ in } \mathbb{R} \right\}$