Linear independence

Review.

• ${\rm span}\{{\boldsymbol v}_1, {\boldsymbol v}_2, ..., {\boldsymbol v}_m\}$ is the set of all linear combinations

 $c_1v_1 + c_2v_2 + ... + c_mv_m.$

• $\text{span}\{\boldsymbol{v}_1, \boldsymbol{v}_2, ..., \boldsymbol{v}_m\}$ is a vector space.

Example 1. Is $\text{span}\left\{\left[\right.$ 1 1 1 T \vert , Γ \mathbf{I} 1 $\overline{2}$ 3 T \vert , Т \mathbf{I} −1 1 3 T \mathbf{I}) equal to \mathbb{R}^3 ?

Solution. The span is equal to \mathbb{R}^3 if and only if the system with augmented matrix

is consistent for all b_1, b_2, b_3 .

• What went "wrong"? Well, the three vectors in the span satisfy

$$
\left[\begin{array}{c} -1 \\ 1 \\ 3 \end{array}\right] = -3 \left[\begin{array}{c} 1 \\ 1 \\ 1 \end{array}\right] + 2 \left[\begin{array}{c} 1 \\ 2 \\ 3 \end{array}\right].
$$

- Hence, $\text{span}\left\{\left[\right.$ 1 1 1 T $\left| \cdot \right|$ Т \mathbf{I} 1 2 3 T \vert , Т \mathbf{I} −1 1 3 T \mathbf{I} $\Big\} = \mathrm{span} \Big\{ \Big[$ 1 1 1 T $\left| \cdot \right|$ Т \mathbf{I} 1 $\overline{2}$ 3 T \mathbf{I}) .
- We are going to say that the three vectors are linearly dependent because they satisfy

$$
-3\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + 2\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} - \begin{bmatrix} -1 \\ 1 \\ 3 \end{bmatrix} = \mathbf{0}.
$$

Definition 2. Vectors $v_1, ..., v_p$ are said to be **linearly independent** if the equation

$$
x_1v_1 + x_2v_2 + \ldots + x_pv_p = \mathbf{0}
$$

has only the trivial solution (namely, $x_1\!=\!x_2\!=\!\ldots\!=\!x_p\!=\!0).$

Likewise, $\bm{v}_1,...,\bm{v}_p$ are said to be **linearly dependent** if there exist coefficients $x_1,...,x_p$, not all zero, such that

$$
x_1v_1+x_2v_2+\ldots+x_pv_p=0.
$$

Example 3.

- Are the vectors T \mathbf{I} 1 1 1 T \vert , T \mathbf{I} 1 2 3 T \vert , Γ \mathbf{I} −1 1 3 T | independent?
- If possible, find a linear dependence relation among them.

Linear independence of matrix columns

• Note that a linear dependence relation, such as

$$
3\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - 2\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + \begin{bmatrix} -1 \\ 1 \\ 3 \end{bmatrix} = \mathbf{0},
$$

can be written in matrix form as

• Hence, each linear dependence relation among the columns of a matrix A corresponds to a nontrivial solution to $Ax = 0$.

Special cases

- A set of a single nonzero vector $\{v_1\}$ is always linearly independent. Why?
- A set of two vectors $\{\boldsymbol{v}_1,\,\boldsymbol{v}_2\}$ is linearly independent if and only if neither of the vectors is a multiple of the other.

Why?

- A set of vectors $\{v_1,...,v_p\}$ containing the zero vector is linearly dependent. Why?
- If a set contains more vectors than there are entries in each vector, then the set is linearly dependent. In other words:

```
Any set \{\boldsymbol{v}_1,...,\boldsymbol{v}_p\} of vectors in \mathbb{R}^n is linearly dependent if p > n.
```
Why?

Example 5. With the least amount of work possible, decide which of the following sets of vectors are linearly independent.

(a)
$$
\left\{ \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 9 \\ 6 \\ 4 \end{bmatrix} \right\}
$$

\n(b)
$$
\left\{ \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix} \right\}
$$

\n(c) columns of
$$
\begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 8 & 7 & 6 \end{bmatrix}
$$

\n(d)
$$
\left\{ \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 9 \\ 6 \\ 4 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \right\}
$$

Solution.

A basis of a vector space

Definition 6. A set of vectors $\{v_1, ..., v_p\}$ in V is a **basis** of V if

- $V = \text{span}\{\boldsymbol{v}_1, ..., \boldsymbol{v}_p\}$, and
- the vectors $\boldsymbol{v}_1,...,\boldsymbol{v}_p$ are linearly independent.

In other words, $\{\bm v_1,...,\bm v_p\}$ in V is a basis of V if and only if every vector $\bm w$ in V can be uniquely expressed as $\boldsymbol{w} = c_1 \boldsymbol{v}_1 + ... + c_p \boldsymbol{v}_p$.

Example 7. Let
$$
e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}
$$
, $e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $e_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$.

Show that $\{e_1, e_2, e_3\}$ is a basis of \mathbb{R}^3 .

It is called the standard basis.

Solution.

Definition 8. *V* is said to have **dimension** p if it has a basis consisting of p vectors.

This definition makes sense because if V has a basis of p vectors, then every basis of V has p vectors. Why? (Think of $V = \mathbb{R}^3$.)

Example 9. \mathbb{R}^3 has dimension 3. Likewise, \mathbb{R}^n has dimension n.

Example 10. Not all vector spaces have a finite basis. For instance, the vector space of all polynomials has *infinite dimension*.

Its standard basis is

Recall that vectors in V form a **basis** of V if they span V and if they are linearly independent. If we know the dimension of V , we only need to check one of these two conditions:

Theorem 11. Suppose that V has dimension d .

- A set of d vectors in V are a basis if they span V .
- A set of d vectors in V are a basis if they are linearly independent.

Example 12. Are the following sets a basis for \mathbb{R}^3 ?

(a)
$$
\left\{ \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \right\}
$$

(b)
$$
\left\{ \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}, \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix} \right\}
$$

(c)
$$
\left\{ \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix} \right\}
$$

Example 13. Let P_2 be the space of polynomials of degree at most 2.

- What is the dimension of P_2 ?
- Is $\{t, 1-t, 1+t-t^2\}$ a basis of \mathbb{P}_2 ?

Solution. The standard basis for \mathbb{P}_2 is

Shrinking and expanding sets of vectors

We can find a basis for $\overline{V = \operatorname{span}\{\boldsymbol{v}_1,...,\boldsymbol{v}_p\}}$ by discarding, if necessary, some of the vectors in the spanning set.

Example 14. Produce a basis of \mathbb{R}^2 from the vectors

$$
\boldsymbol{v}_1 = \left[\begin{array}{c} 1 \\ 2 \end{array} \right], \quad \boldsymbol{v}_2 = \left[\begin{array}{c} -2 \\ -4 \end{array} \right], \quad \boldsymbol{v}_3 = \left[\begin{array}{c} 1 \\ 1 \end{array} \right].
$$

Example 15. Find a basis and the dimension of

$$
W = \left\{ \left[\begin{array}{c} a+b+2c \\ 2a+2b+4c+d \\ b+c+d \\ 3a+3c+d \end{array} \right] : a,b,c,d \text{ real} \right\}.
$$

Solution.

Every set of linearly independent vectors can be extended to a basis.

In other words, let $\{\boldsymbol{v}_1,...,\boldsymbol{v}_p\}$ be linearly independent vectors in $V.$ If V has dimension d , then we can find vectors $\bm{v}_{p+1},...,\bm{v}_d$ such that $\{\bm{v}_1,...,\bm{v}_d\}$ is a basis of $V.$

Example 16. Consider

$$
H = \text{span}\left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\}.
$$

- What is the dimension of this subspace of \mathbb{R}^3 ?
- Give a basis for H , and then extend it to a basis of \mathbb{R}^3 .

Checking our understanding

Example 17. Subspaces of \mathbb{R}^3 can have dimension $0, 1, 2, 3$.

- The only 0-dimensional subspace is
- A 1-dimensional subspace
- A 2-dimensional subspace
- The only 3-dimensional subspace is

True or false?

- Suppose that V has dimension n. Then any set in V containing more than n vectors must be linearly dependent.
- The space P_n of polynomials of degree at most n has dimension $n+1$.
- The vector space of functions $f: \mathbb{R} \to \mathbb{R}$ is infinite-dimensional.
- Consider $V = \text{span}\{\boldsymbol{v}_1,...,\boldsymbol{v}_p\}$. If one of the vectors, say \boldsymbol{v}_k , in the spanning set is a linear combination of the remaining ones, then the remaining vectors still span V .