Review.

• $\operatorname{span}\{oldsymbol{v}_1, oldsymbol{v}_2, ..., oldsymbol{v}_m\}$ is the set of all linear combinations

 $c_1\boldsymbol{v}_1+c_2\boldsymbol{v}_2+\ldots+c_m\boldsymbol{v}_m.$

• $\operatorname{span}\{\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_m\}$ is a vector space.

Example 1. Is span $\left\{ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\3\\3 \end{bmatrix}, \begin{bmatrix} -1\\1\\3\\3 \end{bmatrix} \right\}$ equal to \mathbb{R}^3 ?

Solution. The span is equal to \mathbb{R}^3 if and only if the system with augmented matrix

Γ	1	1	-1	b_1
	1	2	1	b_2
L	1	3	3	b_3

is consistent for all b_1, b_2, b_3 .

• What went "wrong"? Well, the three vectors in the span satisfy

$$\begin{bmatrix} -1\\1\\3 \end{bmatrix} = -3\begin{bmatrix} 1\\1\\1 \end{bmatrix} + 2\begin{bmatrix} 1\\2\\3 \end{bmatrix}.$$

- Hence, span $\left\{ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\3\\3 \end{bmatrix}, \begin{bmatrix} -1\\1\\3\\3 \end{bmatrix} \right\} = \operatorname{span} \left\{ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\3\\3 \end{bmatrix} \right\}.$
- We are going to say that the three vectors are **linearly dependent** because they satisfy

$$-3\begin{bmatrix}1\\1\\1\end{bmatrix}+2\begin{bmatrix}1\\2\\3\end{bmatrix}-\begin{bmatrix}-1\\1\\3\end{bmatrix}=\mathbf{0}.$$

Definition 2. Vectors $v_1, ..., v_p$ are said to be **linearly independent** if the equation

$$x_1 \boldsymbol{v}_1 + x_2 \boldsymbol{v}_2 + \ldots + x_p \boldsymbol{v}_p = \boldsymbol{0}$$

has only the trivial solution (namely, $x_1 = x_2 = ... = x_p = 0$).

Likewise, $v_1, ..., v_p$ are said to be **linearly dependent** if there exist coefficients $x_1, ..., x_p$, not all zero, such that

$$x_1 \boldsymbol{v}_1 + x_2 \boldsymbol{v}_2 + \ldots + x_p \boldsymbol{v}_p = \boldsymbol{0}.$$

Example 3.

- Are the vectors $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$, $\begin{bmatrix} 1\\2\\3 \end{bmatrix}$, $\begin{bmatrix} -1\\1\\3 \end{bmatrix}$ independent?
- If possible, find a linear dependence relation among them.

Linear independence of matrix columns

• Note that a linear dependence relation, such as

$$3\begin{bmatrix}1\\1\\1\end{bmatrix}-2\begin{bmatrix}1\\2\\3\end{bmatrix}+\begin{bmatrix}-1\\1\\3\end{bmatrix}=\mathbf{0},$$

can be written in matrix form as

Γ	1	1	-1	3	
	1	2	1	-2	=0.
L	1	3	3	L 1	

• Hence, each linear dependence relation among the columns of a matrix A corresponds to a nontrivial solution to Ax = 0.

Theorem 4. Let A be an $m \times n$ matrix.						
The columns of A are linearly independent.						
$\iff A \boldsymbol{x} = \boldsymbol{0}$ has only the solution $\boldsymbol{x} = 0$.						
\iff Nul $(A) = \{0\}$						
$\iff A \text{ has } n \text{ pivots.}$	(one in each column)					

Special cases

- A set of a single nonzero vector $\{v_1\}$ is always linearly independent. Why?
- A set of two vectors $\{v_1, v_2\}$ is linearly independent if and only if neither of the vectors is a multiple of the other. Why?
- A set of vectors $\{v_1, ..., v_p\}$ containing the zero vector is linearly dependent. Why?
- If a set contains more vectors than there are entries in each vector, then the set is linearly dependent. In other words:

```
Any set \{v_1, ..., v_p\} of vectors in \mathbb{R}^n is linearly dependent if p > n.
```

Why?

Example 5. With the least amount of work possible, decide which of the following sets of vectors are linearly independent.

(a)
$$\left\{ \begin{bmatrix} 3\\2\\1 \end{bmatrix}, \begin{bmatrix} 9\\6\\4 \end{bmatrix} \right\}$$

(b)
$$\left\{ \begin{bmatrix} 3\\2\\1 \end{bmatrix} \right\}$$

(c) columns of
$$\begin{bmatrix} 1 & 2 & 3 & 4\\5 & 6 & 7 & 8\\9 & 8 & 7 & 6 \end{bmatrix}$$

(d)
$$\left\{ \begin{bmatrix} 3\\2\\1 \end{bmatrix}, \begin{bmatrix} 9\\6\\4 \end{bmatrix}, \begin{bmatrix} 0\\0\\0 \end{bmatrix} \right\}$$

Solution.

A basis of a vector space

Definition 6. A set of vectors $\{v_1, ..., v_p\}$ in V is a **basis** of V if

- $V = \text{span}\{v_1, ..., v_p\}$, and
- the vectors $v_1, ..., v_p$ are linearly independent.

In other words, $\{v_1, ..., v_p\}$ in V is a basis of V if and only if every vector w in V can be uniquely expressed as $w = c_1v_1 + ... + c_pv_p$.

Example 7. Let $e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $e_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$.

Show that $\{e_1, e_2, e_3\}$ is a basis of \mathbb{R}^3 .

It is called the standard basis.

Solution.

Definition 8. V is said to have **dimension** p if it has a basis consisting of p vectors.

This definition makes sense because if V has a basis of p vectors, then every basis of V has p vectors. Why? (Think of $V = \mathbb{R}^3$.)

Example 9. \mathbb{R}^3 has dimension 3. Likewise, \mathbb{R}^n has dimension n.

Example 10. Not all vector spaces have a finite basis. For instance, the vector space of all polynomials has *infinite dimension*.

Its standard basis is

Recall that vectors in V form a **basis** of V if they span V and if they are linearly independent. If we know the dimension of V, we only need to check one of these two conditions:

Theorem 11. Suppose that V has dimension d.

- A set of d vectors in V are a basis if they span V.
- A set of d vectors in V are a basis if they are linearly independent.

Example 12. Are the following sets a basis for \mathbb{R}^3 ?

(a)
$$\left\{ \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix} \right\}$$

(b)
$$\left\{ \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\3 \end{bmatrix}, \begin{bmatrix} -1\\2\\0 \end{bmatrix} \right\}$$

(c)
$$\left\{ \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\3 \end{bmatrix} \right\}$$

Example 13. Let \mathbb{P}_2 be the space of polynomials of degree at most 2.

- What is the dimension of \mathbb{P}_2 ?
- Is $\{t, 1-t, 1+t-t^2\}$ a basis of \mathbb{P}_2 ?

Solution. The standard basis for \mathbb{P}_2 is

Shrinking and expanding sets of vectors

We can find a basis for $V = \text{span}\{v_1, ..., v_p\}$ by discarding, if necessary, some of the vectors in the spanning set.

Example 14. Produce a basis of \mathbb{R}^2 from the vectors

$$\boldsymbol{v}_1 = \begin{bmatrix} 1\\2 \end{bmatrix}, \quad \boldsymbol{v}_2 = \begin{bmatrix} -2\\-4 \end{bmatrix}, \quad \boldsymbol{v}_3 = \begin{bmatrix} 1\\1 \end{bmatrix}.$$

Example 15. Find a basis and the dimension of

$$W = \left\{ \begin{bmatrix} a+b+2c \\ 2a+2b+4c+d \\ b+c+d \\ 3a+3c+d \end{bmatrix} : a, b, c, d \text{ real} \right\}.$$

Solution.

Every set of linearly independent vectors can be extended to a basis.

In other words, let $\{v_1, ..., v_p\}$ be linearly independent vectors in V. If V has dimension d, then we can find vectors $v_{p+1}, ..., v_d$ such that $\{v_1, ..., v_d\}$ is a basis of V.

Example 16. Consider

$$H = \operatorname{span}\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}.$$

- What is the dimension of this subspace of \mathbb{R}^3 ?
- Give a basis for H, and then extend it to a basis of \mathbb{R}^3 .

Checking our understanding

Example 17. Subspaces of \mathbb{R}^3 can have dimension 0, 1, 2, 3.

- The only 0-dimensional subspace is
- A 1-dimensional subspace
- A 2-dimensional subspace
- The only 3-dimensional subspace is

True or false?

- Suppose that V has dimension n. Then any set in V containing more than n vectors must be linearly dependent.
- The space \mathbb{P}_n of polynomials of degree at most n has dimension n+1.
- The vector space of functions $f: \mathbb{R} \to \mathbb{R}$ is infinite-dimensional.
- Consider $V = \operatorname{span}\{v_1, \dots, v_p\}$. If one of the vectors, say v_k , in the spanning set is a linear combination of the remaining ones, then the remaining vectors still span V.