Linear transformations

Throughout, V and W are vector spaces.

Definition 1. A map $T: V \rightarrow W$ is a **linear transformation** if

 $T(c\boldsymbol{x} + d\boldsymbol{y}) = cT(\boldsymbol{x}) + dT(\boldsymbol{y})$ for all $\boldsymbol{x}, \boldsymbol{y}$ in V and all c, d in \mathbb{R} .

Example 2. Let A be an $m \times n$ matrix.

Then the map T(x) = Ax is a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$. Why?

Example 3. Let \mathbb{P}_n be the vector space of all polynomials of degree at most n. Consider the map $T: \mathbb{P}_n \to \mathbb{P}_{n-1}$ given by

$$T(p(t)) = \frac{\mathrm{d}}{\mathrm{d}t} p(t).$$

This map is linear! Why?

Representing linear maps by matrices

Let $\boldsymbol{x}_1, ..., \boldsymbol{x}_n$ be a basis for V.

A linear map $T: V \to W$ is determined by the values $T(\boldsymbol{x}_1), ..., T(\boldsymbol{x}_n)$.

Why?

Definition 4. (From linear maps to matrices)

Let $\boldsymbol{x}_1, ..., \boldsymbol{x}_n$ be a basis for V, and $\boldsymbol{y}_1, ..., \boldsymbol{y}_m$ a basis for W.

The matrix representing T with respect to these bases

- has n columns (one for each of the x_j),
- the j-th column has m entries $a_{1,j},...,a_{m,j}$ determined by

$$T(\boldsymbol{x}_j) = a_{1,j} \boldsymbol{y}_1 + \ldots + a_{m,j} \boldsymbol{y}_m.$$

Example 5. Let $V = \mathbb{R}^2$ and $W = \mathbb{R}^3$. Let T be the linear map such that

$$T\left(\left[\begin{array}{c}1\\0\end{array}\right]\right) = \left[\begin{array}{c}1\\2\\3\end{array}\right], \quad T\left(\left[\begin{array}{c}0\\1\end{array}\right]\right) = \left[\begin{array}{c}4\\0\\7\end{array}\right].$$

What is the matrix A(T) representing T with respect to the standard bases?

Example 6. As in the previous example, let $V = \mathbb{R}^2$ and $W = \mathbb{R}^3$. Let T be the linear map such that

$$T\left(\left[\begin{array}{c}1\\0\end{array}\right]\right) = \left[\begin{array}{c}1\\2\\3\end{array}\right], \quad T\left(\left[\begin{array}{c}0\\1\end{array}\right]\right) = \left[\begin{array}{c}4\\0\\7\end{array}\right].$$

What is the matrix B(T) representing T with respect to the following bases?

$$\underbrace{\begin{bmatrix} 1\\1\\1\\ \mathbf{x}_1 \end{bmatrix}}_{\mathbf{x}_1}, \underbrace{\begin{bmatrix} -1\\2\\ \mathbf{x}_2 \end{bmatrix}}_{\mathbf{x}_2} \text{ for } \mathbb{R}^2, \qquad \begin{bmatrix} 1\\1\\1\\1\\ \mathbf{y}_1 \end{bmatrix}, \underbrace{\begin{bmatrix} 0\\1\\0\\ \mathbf{y}_2 \end{bmatrix}}_{\mathbf{y}_2}, \underbrace{\begin{bmatrix} 0\\0\\1\\ \mathbf{y}_3 \end{bmatrix}}_{\mathbf{y}_3} \text{ for } \mathbb{R}^3.$$

A matrix representing T encodes in column j the coefficients of $T(x_j)$ expressed as a linear combination of $y_1, ..., y_m$.

Example 7. Let $T: \mathbb{P}_3 \to \mathbb{P}_2$ be the linear map given by

$$T(p(t)) = \frac{\mathrm{d}}{\mathrm{d}t}p(t).$$

What is the matrix A(T) representing T with respect to the standard bases?

Important geometric examples

We consider some linear maps $\mathbb{R}^2 \to \mathbb{R}^2$ and their geometric interpretation.

Example 8. The matrix
$$A = \begin{bmatrix} c & 0 \\ 0 & c \end{bmatrix} \dots$$

Example 9. The matrix
$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \dots$$

Example 10. The matrix
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \dots$$

_

_

Example 11. The matrix
$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \dots$$

Example 12. The matrix $A = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \dots$

Example 13. Let T be the linear map which projects each vector onto the line with slope θ .

- Which matrix represents T (with respect to the standard basis)?
- Give a basis of \mathbb{R}^2 with respect to which T is represented by a very simple matrix.