Orthogonality

The inner product and distances

Definition 1. The inner product (or dot product) of v, w in \mathbb{R}^n :

$$\boldsymbol{v} \cdot \boldsymbol{w} = \boldsymbol{v}^T \boldsymbol{w} = v_1 w_1 + \ldots + v_n w_n$$

Example 2. For instance,

$$\begin{bmatrix} 1\\2\\3 \end{bmatrix} \cdot \begin{bmatrix} 1\\-1\\-2 \end{bmatrix} =$$

Definition 3.

• The **norm** (or **length**) of a vector \boldsymbol{v} in \mathbb{R}^n is

$$\|\boldsymbol{v}\| = \sqrt{\boldsymbol{v}\cdot\boldsymbol{v}} = \sqrt{v_1^2 + \ldots + v_n^2}.$$

This is the distance to the origin.

• The **distance** between points \boldsymbol{v} and \boldsymbol{w} in \mathbb{R}^n is

$$\operatorname{dist}(\boldsymbol{v},\boldsymbol{w}) = \|\boldsymbol{v}-\boldsymbol{w}\|.$$

Example 4. For instance, in \mathbb{R}^2 ,

$${\rm dist} \left(\left[\begin{array}{c} x_1 \\ y_1 \end{array} \right], \left[\begin{array}{c} x_2 \\ y_2 \end{array} \right] \right) \; = \;$$

Orthogonal vectors

Definition 5. v and w in \mathbb{R}^n are orthogonal if

$$\boldsymbol{v}\cdot\boldsymbol{w}=0.$$

Armin Straub astraub@illinois.edu

Example 6. Are the following vectors orthogonal?

(a) $\begin{bmatrix} 1\\2 \end{bmatrix}$, $\begin{bmatrix} -2\\1 \end{bmatrix}$ (b) $\begin{bmatrix} 1\\2\\1 \end{bmatrix}$, $\begin{bmatrix} -2\\1\\1 \end{bmatrix}$

Theorem 7. Suppose that $v_1, ..., v_n$ are nonzero and pairwise orthogonal. Then $v_1, ..., v_n$ are independent.

Proof. Suppose that

 $c_1 \boldsymbol{v}_1 + \ldots + c_n \boldsymbol{v}_n = \boldsymbol{0}.$

Example 8. Let us consider $A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \\ 3 & 6 \end{bmatrix}$.

Find Nul(A) and $Col(A^T)$. Observe!

Solution.

Armin Straub astraub@illinois.edu **Example 9.** Repeat for $A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 0 \\ 3 & 6 & 0 \end{bmatrix}$.

Solution.

The fundamental theorem, second act

Definition 10. Let W be a subspace of \mathbb{R}^n , and v in \mathbb{R}^n .

- \boldsymbol{v} is orthogonal to W, if $\boldsymbol{v} \cdot \boldsymbol{w} = 0$ for all \boldsymbol{w} in W.
- Another subspace V is orthogonal to W, if every vector in V is orthogonal to W.
- The orthogonal complement of W is the space W^{\perp} of all vectors that are orthogonal to W.

Exercise: show that the orthogonal complement is indeed a vector space.

Example 11. In the previous example, $A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 0 \\ 3 & 6 & 0 \end{bmatrix}$.

We found that

$$\operatorname{Nul}(A) = \operatorname{span}\left\{ \begin{bmatrix} -2\\1\\0 \end{bmatrix} \right\}, \quad \operatorname{Col}(A^T) = \operatorname{span}\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix} \right\}$$

are orthogonal subspaces.

Theorem 12. (Fundamental Theorem of Linear Algebra, Part I)

Let A be an $m \times n$ matrix of rank r.

- dim $\operatorname{Col}(A) = r$ (subspace of \mathbb{R}^m)
- dim $\operatorname{Col}(A^T) = r$ (subspace of \mathbb{R}^n)
- dim Nul(A) = n r (subspace of \mathbb{R}^n)
- dim Nul $(A^T) = m r$ (subspace of \mathbb{R}^m)

Theorem 13. (Fundamental Theorem of Linear Algebra, Part II)• Nul(A) is orthogonal to $Col(A^T)$. (both subspaces of \mathbb{R}^n)Note that dim Nul(A) + dim $Col(A^T) = n$.Hence, the two spaces are orthogonal complements.• Nul(A^T) is orthogonal to Col(A).Again, the two spaces are orthogonal complements.Why?

Corollary 14. $A \boldsymbol{x} = \boldsymbol{b}$ is solvable $\iff \boldsymbol{y}^T \boldsymbol{b} = 0$ whenever $\boldsymbol{y}^T A = \boldsymbol{0}$

Proof.

Motivation

Example 15. Not all linear systems have solutions.

In fact, for many applications, data needs to be fitted and there is no hope for a perfect match.

For instance, Ax = b with

$$\left[\begin{array}{rrr}1 & 2\\ 2 & 4\end{array}\right] \boldsymbol{x} = \left[\begin{array}{r}-1\\ 2\end{array}\right]$$

has no solution:

- $\begin{bmatrix} -1\\2 \end{bmatrix}$ is not in $\operatorname{Col}(A) = \operatorname{span}\left\{ \begin{bmatrix} 1\\2 \end{bmatrix} \right\}$
- Instead of giving up, we want the x which makes Ax and b as close as possible.
- Such *x* is characterized by ...

 $A \boldsymbol{x}$

b