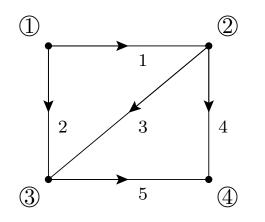
Application: directed graphs



- Graphs appear in network analysis (e.g. internet) or circuit analysis.
- arrow indicates direction of flow
- no edges from a node to itself
- at most one edge between nodes

Definition 1. Let G be a graph with m edges and n nodes. The **edge-node incident matrix** of G is the $m \times n$ matrix A with

 $A_{i,j} = \begin{cases} -1, & \text{if edge } i \text{ leaves node } j, \\ +1, & \text{if edge } i \text{ enters node } j, \\ 0, & \text{otherwise.} \end{cases}$

Example 2. Give the edge-node incidence matrix of our graph.

Solution.

Meaning of the null space

The \boldsymbol{x} in $A\boldsymbol{x}$ is assigning values to each node.

You may think of assigning **potentials** to each node.

$$\mathbf{0} = \begin{bmatrix} -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} =$$

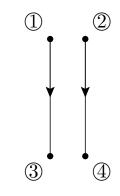
So: $Ax = 0 \iff$

Armin Straub astraub@illinois.edu For our graph: Nul(A) is spanned by ...

This always happens as long as the graph is **connected**.

Example 3. Give a basis for Nul(A) for the following graph.

Solution.



In general:

 $\dim \operatorname{Nul}(A)$ is

For large graphs, disconnection may not be apparent visually.

But we can always find out by computing $\dim Nul(A)$ using Gaussian elimination!

Meaning of the left null space

The y in $y^{T}A$ is assigning values to each edge.

You may think of assigning currents to each edge.

$$A = \begin{bmatrix} -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & -1 & 1 \end{bmatrix}, \quad A^{T} = \begin{bmatrix} -1 & -1 & 0 & 0 & 0 \\ 1 & 0 & -1 & -1 & 0 \\ 0 & 1 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} y_{1} \\ y_{2} \\ y_{3} \\ y_{4} \\ y_{5} \end{bmatrix} =$$

So:
$$A^T \boldsymbol{y} = \boldsymbol{0} \iff$$

This is Kirchhoff's first law.

What is the simplest way to balance current?

Example 4. Suppose we did not "see" this. Let us solve $A^T y = 0$ for our graph:

-1	-1	0	0	0
$\begin{bmatrix} -1\\ 1 \end{bmatrix}$	0	-1	-1	0
0	1	1	0	-1
00	0	0	1	1

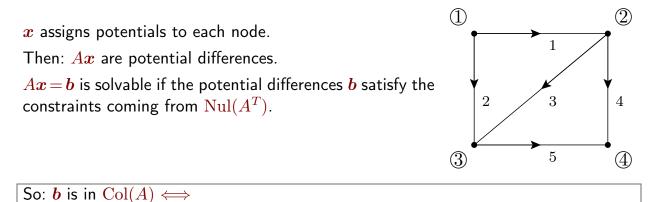
In general:

 $\dim \operatorname{Nul}(A^T)$ is

Meaning of the column space

- FTLA: **b** is in $\operatorname{Col}(A) \iff \mathbf{b}$ is orthogonal to $\operatorname{Nul}(A^T)$
- Just found: $Nul(A^T)$ has basis

Hence, \boldsymbol{b} is in $\operatorname{Col}(A)$ if and only if

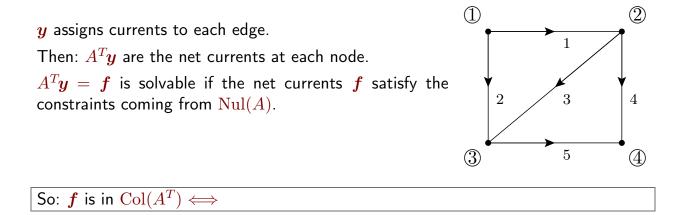


This is Kirchhoff's second law.

Meaning of the row space

- FTLA: \boldsymbol{f} is in $\operatorname{Col}(A^T) \iff \boldsymbol{f}$ is orthogonal to $\operatorname{Nul}(A)$
- Just found: Nul(A) has basis

Hence, f is in $Col(A^T)$ if and only if



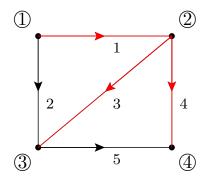
- Recall: linear dependencies among rows $\leftrightarrow \rightarrow$ solutions to $y^T A = 0$
- $Nul(A^T)$ has basis
- A subset of the rows is independent \iff
- A subset of the rows is a basis for $\operatorname{Col}(A^T)$

 \iff

A spanning tree:

- includes all nodes ("spans"),
- does not contain loops ("tree").

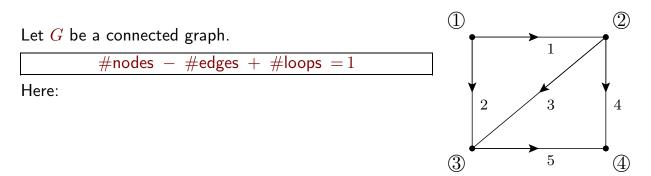
The choice to the right corresponds to



for basis of the row space of

$\begin{bmatrix} -1 \end{bmatrix}$	1	0	0	1
-1	0	1	0	
0	-1	1	0	
0	-1	0	1	
0	0	-1	1]

Euler's formula



Proof. Let A be the $m \times n$ edge-node incidence matrix of G.