Orthogonal bases

 \bullet $\,$ Recall: Suppose that $\boldsymbol{v}_1,...,\boldsymbol{v}_n$ are nonzero and (pairwise) orthogonal. Then $\boldsymbol{v}_1,...,$ v_n are independent.

Definition 1. A basis $\boldsymbol{v}_1, ..., \boldsymbol{v}_n$ of a vector space V is an **orthogonal basis** if the vectors are (pairwise) orthogonal.

Example 2. Are the vectors T \mathbf{I} 1 −1 $\overline{0}$ T $\Big\}$ Γ \mathbf{I} 1 1 $\overline{0}$ T $\Big\}$ Т \mathbf{I} $\overline{0}$ $\overline{0}$ 1 $\sqrt{}$ an orthogonal basis for $\mathbb{R}^3?$

Solution.

Note that we do not need to check that the three vectors are independent. That follows from their orthogonality.

Example 3. Suppose $\boldsymbol{v}_1,...,\boldsymbol{v}_n$ is an orthogonal basis of V , and that \boldsymbol{w} is in V . Find $c_1,...,c_n$ such that

 $w = c_1v_1 + ... + c_nv_n.$

Solution. Take the dot product of v_1 with both sides:

If $\boldsymbol{v}_1, ..., \boldsymbol{v}_n$ is an orthogonal basis of V , and \boldsymbol{w} is in V , then

$$
\mathbf{w} = c_1 \mathbf{v}_1 + \ldots + c_n \mathbf{v}_n \quad \text{with} \quad c_j = \frac{\mathbf{w} \cdot \mathbf{v}_j}{\mathbf{v}_j \cdot \mathbf{v}_j}.
$$

Example 4. Express Γ \mathbf{I} 3 7 4 T \vert in terms of the basis Т \mathbf{I} 1 −1 $\overline{0}$ T $\Big\}$ Т \mathbf{I} 1 1 $\overline{0}$ T $\left| \cdot \right|$ T \mathbf{I} $\overline{0}$ $\overline{0}$ 1 T $\left| \cdot \right|$

Solution.

Definition 5. A basis $\boldsymbol{v}_1,...,\boldsymbol{v}_n$ of a vector space V is an **orthonormal basis** if the vectors are orthogonal and have length 1.

If $\boldsymbol{v}_1,...,\boldsymbol{v}_n$ is an orthonormal basis of V , and \boldsymbol{w} is in V , then $\mathbf{w} = c_1 \mathbf{v}_1 + \ldots + c_n \mathbf{v}_n$ with $c_j = \mathbf{v}_j \cdot \mathbf{w}$.

Example 6. Is the basis Т \mathbf{I} 1 −1 $\overline{0}$ T $\left| \cdot \right|$ T \mathbf{I} 1 1 $\overline{0}$ T $\left| \cdot \right|$ T \mathbf{I} $\overline{0}$ $\overline{0}$ 1 T orthonormal? If not, normalize the vectors to produce an orthonormal basis.

Solution.

Orthogonal projections

 \boldsymbol{y} \boldsymbol{x} **Definition 7.** The **orthogonal projection** of vector x onto vector y is $\hat{x} = \frac{x \cdot y}{\text{max}}$ $\bm{y} \cdot \bm{y}$ \boldsymbol{y} . The vector \hat{x} is the closest vector to \bm{x} , which is in $\text{span}\{\boldsymbol{y}\}.$ \bullet The "error" $\boldsymbol{x}^\perp \!=\! \boldsymbol{x} - \hat{\boldsymbol{x}}$ is orthogonal to $\operatorname{span}\{\boldsymbol{y}\}.$ $x^{\perp}=x-\hat{x}=x-\frac{x\cdot y}{y+x}$ $\frac{x\cdot y}{y\cdot y}$ y is also referred to as the component of x orthogonal to \bm{y} .

Example 8. What is the orthogonal projection of $\boldsymbol{x} = \begin{bmatrix} -8 \\ 4 \end{bmatrix}$ 4 $\big]$ onto $\boldsymbol{y}\!=\!\big[\begin{smallmatrix} 3 \ 1 \end{smallmatrix}\big]$ 1 ?

Solution.

Solution.

Recall: If $\boldsymbol{v}_1,...,\boldsymbol{v}_n$ is an orthogonal basis of V , and \boldsymbol{w} is in V , then

$$
\mathbf{w} = c_1 \mathbf{v}_1 + \ldots + c_n \mathbf{v}_n \quad \text{with} \quad c_j = \frac{\mathbf{w} \cdot \mathbf{v}_j}{\mathbf{v}_j \cdot \mathbf{v}_j}.
$$

 \rightsquigarrow \boldsymbol{w} decomposes as the sum of its projections onto each basis vector

Orthogonal projection on subspaces

Theorem 10. Let W be a subspace of \mathbb{R}^n . Then, each x in \mathbb{R}^n can be uniquely written as

- \hat{x} is the orthogonal projection of x onto W.
- \hat{x} is the point in W closest to \hat{x} . For any other y in W,

 $dist(x, \hat{x}) < dist(x, y).$

• If $v_1, ..., v_m$ is an orthogonal basis of W , then

Example 11. Let
$$
W = \text{span}\left\{ \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right\}
$$
, and $x = \begin{bmatrix} 0 \\ 3 \\ 10 \end{bmatrix}$.

- Find the orthogonal projection of x onto W .
- Write x as a vector in W plus a vector orthogonal to W .

Solution.

Theorem 12. Let $v_1, ..., v_m$ be an orthogonal basis of W , a subspace of \mathbb{R}^n . The projection map $\pi_W: \mathbb{R}^n \to \mathbb{R}^n$, given by

$$
\boldsymbol{x}\!\mapsto\!\bigg(\frac{\boldsymbol{x}\cdot\boldsymbol{v}_1}{\boldsymbol{v}_1\cdot\boldsymbol{v}_1}\bigg)\!\boldsymbol{v}_1\!+\!\ldots+\! \bigg(\frac{\boldsymbol{x}\cdot\boldsymbol{v}_m}{\boldsymbol{v}_m\cdot\boldsymbol{v}_m}\bigg)\!\boldsymbol{v}_m
$$

is linear. The matrix P representing π_W with respect to the standard basis is the corresponding projection matrix.

Example 13. Find the projection matrix P which corresponds to orthogonal projection onto $W = \text{span}\bigg\{\bigg[$ 3 $\overline{0}$ 1 T $\Big\}$ Γ \mathbf{I} $\overline{0}$ 1 $\overline{0}$ T \mathbf{I}) in \mathbb{R}^3 .

Solution.

Example 14. Compute P^2 for the projection matrix we just computed. Explain!

Solution.

Practice problems

Example 15. Find the closest point to x in $\text{span}\{\boldsymbol{v}_1, \boldsymbol{v}_2\}$, where

$$
\boldsymbol{x} = \begin{bmatrix} 2 \\ 4 \\ 0 \\ -2 \end{bmatrix}, \quad \boldsymbol{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \quad \boldsymbol{v}_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}.
$$

Solution. This is the orthogonal projection of x onto $\text{span}\{v_1, v_2\}$.