Orthogonal bases

• Recall: Suppose that $v_1, ..., v_n$ are nonzero and (pairwise) orthogonal. Then $v_1, ..., v_n$ are independent.

Definition 1. A basis $v_1, ..., v_n$ of a vector space V is an orthogonal basis if the vectors are (pairwise) orthogonal.

Example 2. Are the vectors $\begin{bmatrix} 1\\ -1\\ 0 \end{bmatrix}, \begin{bmatrix} 1\\ 1\\ 0\\ 1 \end{bmatrix}, \begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}$ an orthogonal basis for \mathbb{R}^3 ?

Solution.

Note that we do not need to check that the three vectors are independent. That follows from their orthogonality.

Example 3. Suppose $v_1, ..., v_n$ is an orthogonal basis of V, and that w is in V. Find $c_1, ..., c_n$ such that

 $\boldsymbol{w} = c_1 \boldsymbol{v}_1 + \ldots + c_n \boldsymbol{v}_n.$

Solution. Take the dot product of v_1 with both sides:

If v_1, \ldots, v_n is an orthogonal basis of V, and w is in V, then

$$\boldsymbol{w} = c_1 \boldsymbol{v}_1 + \ldots + c_n \boldsymbol{v}_n$$
 with $c_j = \frac{\boldsymbol{w} \cdot \boldsymbol{v}_j}{\boldsymbol{v}_j \cdot \boldsymbol{v}_j}$.

Example 4. Express $\begin{bmatrix} 3\\7\\4 \end{bmatrix}$ in terms of the basis $\begin{bmatrix} 1\\-1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix}$.

Solution.

Definition 5. A basis $v_1, ..., v_n$ of a vector space V is an **orthonormal basis** if the vectors are orthogonal and have length 1.

If $v_1, ..., v_n$ is an orthonormal basis of V, and w is in V, then $w = c_1 v_1 + ... + c_n v_n$ with $c_j = v_j \cdot w$.

Example 6. Is the basis $\begin{bmatrix} 1\\ -1\\ 0 \end{bmatrix}, \begin{bmatrix} 1\\ 1\\ 0\\ 1 \end{bmatrix}, \begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}$ orthonormal? If not, normalize the vectors to produce an orthonormal basis.

Solution.

Orthogonal projections

Definition 7. The orthogonal projection of vector x onto vector y is
\$\heta = \frac{x \cdot y}{y \cdot y} y.\$
\$\heta = \frac{x \cdot x}{y \cdot y} y is also referred to as the component of x orthogonal to y.\$
\$\heta = \frac{x \cdot x}{y \cdot y} y is also referred to as the component of x orthogonal to y.\$

Example 8. What is the orthogonal projection of $\boldsymbol{x} = \begin{bmatrix} -8 \\ 4 \end{bmatrix}$ onto $\boldsymbol{y} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$?

Solution.

Solution.

Recall: If $v_1, ..., v_n$ is an orthogonal basis of V, and w is in V, then

$$oldsymbol{w} = c_1 oldsymbol{v}_1 + \ldots + c_n oldsymbol{v}_n$$
 with $c_j = rac{oldsymbol{w} \cdot oldsymbol{v}_j}{oldsymbol{v}_j \cdot oldsymbol{v}_j}.$

 $\rightsquigarrow w$ decomposes as the sum of its projections onto each basis vector

Orthogonal projection on subspaces

Theorem 10. Let W be a subspace of \mathbb{R}^n . Then, each \boldsymbol{x} in \mathbb{R}^n can be uniquely written as

- \hat{x} is the orthogonal projection of x onto W.
- \hat{x} is the point in W closest to x. For any other y in W,

 $\operatorname{dist}(\boldsymbol{x}, \hat{\boldsymbol{x}}) < \operatorname{dist}(\boldsymbol{x}, \boldsymbol{y}).$

• If $\boldsymbol{v}_1,...,\boldsymbol{v}_m$ is an orthogonal basis of W, then

Example 11. Let
$$W = \operatorname{span}\left\{ \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right\}$$
, and $\boldsymbol{x} = \begin{bmatrix} 0 \\ 3 \\ 10 \end{bmatrix}$.

- Find the orthogonal projection of \boldsymbol{x} onto W.
- Write \boldsymbol{x} as a vector in W plus a vector orthogonal to W.

Solution.

Theorem 12. Let $v_1, ..., v_m$ be an orthogonal basis of W, a subspace of \mathbb{R}^n . The projection map $\pi_W: \mathbb{R}^n \to \mathbb{R}^n$, given by

$$oldsymbol{x}\mapstoigg(rac{oldsymbol{x}\cdotoldsymbol{v}_1}{oldsymbol{v}_1\cdotoldsymbol{v}_1}igg)oldsymbol{v}_1+...+igg(rac{oldsymbol{x}\cdotoldsymbol{v}_m}{oldsymbol{v}_m\cdotoldsymbol{v}_m}igg)oldsymbol{v}_m$$

is linear. The matrix P representing π_W with respect to the standard basis is the corresponding **projection matrix**.

Example 13. Find the projection matrix P which corresponds to orthogonal projection onto $W = \operatorname{span}\left\{ \begin{bmatrix} 3\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\}$ in \mathbb{R}^3 .

Solution.

Example 14. Compute P^2 for the projection matrix we just computed. Explain!

Solution.

Practice problems

Example 15. Find the closest point to $m{x}$ in $\mathrm{span}\{m{v}_1,m{v}_2\}$, where

$$\boldsymbol{x} = \begin{bmatrix} 2\\4\\0\\-2 \end{bmatrix}, \quad \boldsymbol{v}_1 = \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}, \quad \boldsymbol{v}_2 = \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}.$$

Solution. This is the orthogonal projection of x onto span $\{v_1, v_2\}$.

•••

•••