Application: Fourier series

Review. Given an orthogonal basis $v_1, v_2, ..., we$ express a vector x as

$$x = c_1 v_1 + c_2 v_2 + \dots, \quad c_i =$$

A **Fourier series** of a function f(x) is an infinite expansion:

$$f(x) = a_0 + a_1 \cos(x) + b_1 \sin(x) + a_2 \cos(2x) + b_2 \sin(2x) + \cdots$$

- We are working in the infinite dimensional vector space of functions.
 More precisely, we are working with (say, continuous) functions that are periodic with period 2π.
- The functions

```
1, \cos(x), \sin(x), \cos(2x), \sin(2x), \dots
```

are a basis of this space. In fact, an orthogonal basis!

That's the reason for the success of Fourier series.

What is the inner product on the space of functions?

- Vectors: $\langle \boldsymbol{v}, \boldsymbol{w} \rangle =$
- Functions: $\langle f, g \rangle =$ Why these limits?

Example 1. Show that $\cos(x)$ and $\sin(x)$ are orthogonal.

Solution.

More generally, $1, \cos(x), \sin(x), \cos(2x), \sin(2x), \dots$ are all orthogonal to each other.

Example 2. What is the norm of $\cos(x)$?

Solution.

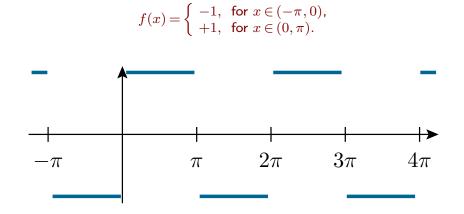
Example 3. How do we find a_1 ?

Or: how much cosine is in a function f(x)?

Solution.

f(x) has the Fourier series $f(x) = a_0 + a_1 \cos(x) + b_1 \sin(x) + a_2 \cos(2x) + b_2 \sin(2x) + \cdots$ where $a_k = \frac{\langle f(x), \cos(kx) \rangle}{\langle \cos(kx), \cos(kx) \rangle} =$ $b_k = \frac{\langle f(x), \sin(kx) \rangle}{\langle \sin(kx), \sin(kx) \rangle} =$ $a_0 = \frac{\langle f(x), 1 \rangle}{\langle 1, 1 \rangle} =$

Example 4. Find the Fourier series of the 2π -periodic function f(x) defined by



Solution.

Note. We just observed the following general principle: an odd function is orthogonal to ...

f(x) is odd and the cosines are even functions, so ...

Example 5. Consider the space of 1-periodic functions.

- What does a Fourier series for a 1-periodic f(x) look like?
- What should be our inner product for Fourier series?
- How are the Fourier coefficients computed?

Solution.